首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The microbiological quality of drinking water from 144 private water supplies in the Netherlands was tested and additionally the occurrence of Escherichia coli O157 was examined. Faecal indicators were enumerated by using standard membrane filtration methods. The presence of E. coli O157 was determined using a specific enrichment method. Eleven percent of the samples contained faecal indicators whereas E. coli O157:H7 was isolated from 2.7% of the samples that otherwise met the drinking water standards. The E. coli O157 positive water supplies were located on camp-sites in agricultural areas with large grazer densities. Pulsed field gel electrophoresis (PFGE) analysis suggested that cattle might have been the cause of contamination. Our results indicate that compliance with microbiological quality standards obtained in routine monitoring does not always guarantee the absence of pathogens. The presence of pathogens such as E. coli O157 may suggest possible health consequences; however, a risk assessment process should be performed as the monitoring of both faecal indicator parameters and pathogens do not predict the effect of microbial contamination of drinking water on a population.  相似文献   

2.
Campylobacter spp., mainly C. jejuni and C. coli, are recognized as significant human bacterial pathogens, being responsible for increasing numbers of gastroenteritis cases worldwide. Several reports have indicated that environmental waters are potential reservoirs and transmitting vehicles for these bacteria. The purpose of this study was thus to examine the occurrence of campylobacters in drinking and environmental water sources of South Africa, a country with a warmer climate and higher microbial pollution levels than those previously addressed in the Northern Hemisphere where similar investigations have been undertaken. Various types of water samples (five drinking water, four ground water, 11 surface water and four raw sewage) were collected from different parts of South Africa. Detection was by enrichment in Bolton broth prior to plating on both selective mCCDA or through a 0.6microm membrane filter on non-selective blood agar isolation media. Out of 100 initially selected Campylobacter-like isolates, only 22 did not grow aerobically and were subsequently identified as Campylobacter spp. by biochemical tests. However, the results obtained by 16S rRNA sequence analysis indicated that only three of these strains (13.6%) were Campylobacter jejuni and the remaining 19 strains were identified as Arcobacter butzleri. The spread of Arcobacter via water warrants further investigation, especially in view of the higher levels of detection and pathogenic nature of these bacteria.  相似文献   

3.
Monitoring of Cryptosporidium and Giardia river contamination in Paris area   总被引:1,自引:0,他引:1  
This study evaluates the protozoan contamination of river waters, which are used for drinking water in Paris and its surrounding area (about 615,000 m(3) per day in total, including 300,000 m(3) for Paris area). Twenty litre samples of Seine and Marne Rivers were collected over 30 months and analyzed for Cryptosporidium oocysts and Giardia cysts detection according to standard national or international methods. Cryptosporidium oocysts and Giardia cysts were found, respectively, in 45.7% and 93.8% of a total of 162 river samples, with occasional high concentration peaks. A significant seasonal pattern was observed, with positive samples for Cryptosporidium more frequent in autumn than spring, summer and winter, and positive samples for Giardia less frequent in summer. Counts of enterococci and rainfalls were significantly associated with Giardia concentration but not Cryptosporidium. Other faecal bacteria were not correlated with monitored protozoan. Marne seems to contribute mainly to the parasitic contamination observed in Seine. Based on seasonal pattern and rainfall correlation, we hypothesize that the origin of contamination is agricultural practices and possible dysfunction of sewage treatment plants during periods of heavy rainfalls. High concentrations of protozoa found at the entry of drinking water plants justify the use of efficient water treatment methods. Treatment performances must be regularly monitored to ensure efficient disinfection according to the French regulations.  相似文献   

4.
The culturability of Escherichia coli in undersaturated drinking water with respect to CaCO3 (corrosive water) or in oversaturated water (non-corrosive water) was tested in different reactors: glass flasks (batch, "non-reactive" wall); glass reactors (chemostat, "non-reactive" wall) versus a corroded cast iron Propella reactor (chemostat, "reactive" wall) and a 15-year-old distribution system pilot (chemostat, "reactive" wall with 1% corroded cast iron and 99% cement-lined cast iron). The E. coli in E. coli-spiked drinking water was not able to maintain its culturability and colonize the experimental systems. It appears from our results that the optimal pH for maintaining E. coli culturability was around 8.2 or higher. However, in reactors with a reactive wall (corroded cast iron), the decline in E. coli culturability was slower when the pH was adjusted to 7.9 or 7.7 (i.e. a reactor fed with corrosive water; pHpHs). We tentatively deduce that corrosion products coming from chemical reactions driven by corrosive waters on the pipe wall improve E. coli culturability.  相似文献   

5.
McLain JE  Williams CF 《Water research》2008,42(15):4041-4048
As the reuse of municipal wastewater escalates worldwide as a means to extend increasingly limited water supplies, accurate monitoring of water quality parameters, including Escherichia coli (E. coli), increases in importance. Chromogenic media are often used for detection of E. coli in environmental samples, but the presence of unique levels of organic and inorganic compounds alters reclaimed water chemistry, potentially hindering E. coli detection using enzyme-based chromogenic technology. Over seven months, we monitored E. coli levels using m-Coli Blue 24((R)) broth in a constructed wetland filled with tertiary-treated municipal effluent. No E. coli were isolated in the wetland source waters, but E. coli, total coliforms, and heterotrophic bacteria increased dramatically within the wetland on all sampling dates, most probably due to fecal inputs from resident wildlife populations. Confirmatory testing of isolates presumptive for E. coli revealed a 41% rate of false-positive identification using m-Coli Blue 24((R)) broth over seven months. Seasonal differences were evident, as false-positive rates averaged 35% in summer, but rose sharply to 75% in the late fall and winter. Corrected E. coli levels were significantly correlated with electrical conductivity, indicating that water chemistry may be controlling bacterial survival within the wetland. This is the first study to report that accuracy of chromogenic media for microbial enumeration in reclaimed water may show strong seasonal differences, and highlights the importance of validation of microbiological results from chromogenic media for accurate analysis of reclaimed water quality.  相似文献   

6.
Bertrand R  Roig B 《Water research》2007,41(6):1280-1286
Escherichia coli O157 strains have emerged as important human enteric pathogens. Strains that express the O-antigen 157 are commonly associated with severe clinical manifestations, including bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. E. coli O157 strains may be transmitted in a variety of ways, including food, water and person-to-person or animal-to-person contact. Fecal contamination is one source of environmental contamination and is responsible for the presence of these pathogens in the environment. We used a specific and sensitive PCR assay based on the rfbE gene to detect low levels of these pathogens in wastewater. The set of primers used was designed to amplify an intragenic segment of the rfbE gene. The amplification assay detected 200 CFU of E. coli O157 in pure water. The prevalence of E. coli O157 in the effluents of 44 wastewater treatment plants was determined (7%).  相似文献   

7.
Antibiotic resistance of E. coli in sewage and sludge   总被引:6,自引:0,他引:6  
The aim of the study is the evaluation of resistance patterns of E. coli in wastewater treatment plants without an evaluation of basic antibiotic resistance mechanisms.Investigations have been done in sewage, sludge and receiving waters from three different sewage treatment plants in southern Austria. A total of 767 E. coli isolates were tested regarding their resistance to 24 different antibiotics. The highest resistance rates were found in E. coli strains of a sewage treatment plant which treats not only municipal sewage but also sewage from a hospital.Among the antimicrobial agents tested, the highest resistance rates in the penicillin group were found for Ampicillin (AM) (up to 18%) and Piperacillin (PIP) (up to 12%); in the cephalosporin group for Cefalothin (CF) (up to 35%) and Cefuroxime-Axetil (CXMAX) (up to 11%); in the group of quinolones for Nalidixic acid (NA) (up to 15%); and for Trimethoprime/Sulfamethoxazole (SXT) (up to 13%) and for Tetracycline (TE) (57%).Median values for E. coli in the inflow (crude sewage) of the plants were between 2.0 x 10(4) and 6.1 x 10(4)CFU/ml (Coli ID-agar, BioMerieux 42017) but showed a 200-fold reduction in all three plants in the effluent. Nevertheless, more than 10(2)CFU E. coli/ml reached the receiving water and thus sewage treatment processes contribute to the dissemination of resistant bacteria in the environment.  相似文献   

8.
McLellan SL  Salmore AK 《Water research》2003,37(11):2700-2708
We conducted a comprehensive regional spatial assessment of bacterial water quality in order to determine the points of entry of fecal pollution into a swimming beach area on Lake Michigan that historically has had numerous water quality advisories for elevated levels of Escherichia coli (E. coli). Intensive, consecutive-day water samples were collected during dry and rainy conditions across multiple shoreline and offshore sites, and E. coli levels were enumerated from these samples. For both dry and rainy days, shoreline sites demonstrated significantly higher E. coli levels than offshore regions. We found that offshore (10-150m from shore) E. coli levels did not exceed 235CFU/100ml in more than 5% of the samples collected for 19 surveys (n=209). In contrast, samples taken at the beach area exceeded 235CFU/100ml in 66% of the samples collected for 43 shoreline surveys (n=675). Locally high E. coli levels coincided with bird presence and stormwater at the swimming beach located within the marina, and were unrelated to E. coli levels in connecting harbor waters. We conclude that beach water quality may be impacted by local, persistent contamination, which may confound routine beach monitoring and prevent the detection of regional pollution from other sources.  相似文献   

9.
We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml−1) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment.  相似文献   

10.
Davis K  Anderson MA  Yates MV 《Water research》2005,39(7):1277-1288
The spatial and temporal distributions of indicator bacteria in a small, multiple-use source drinking water reservoir in Southern California, USA were quantified over the period August 2001-July 2002. High levels of total and fecal coliform bacteria were present in Canyon Lake (annual geometric mean concentrations+/-SEM of 3.93+/-0.02 and 3.02+/-0.03 log cfu/100mL, respectively), while comparatively low levels of enterococci and E. coli were found (1.16+/-0.02 log cfu/100mL and 0.30+/-0.03 log MPN/100mL, respectively). As a result, these different indicator bacteria yielded quite divergent indices of water quality, with 72.1% of all surface samples (n=294) exceeding the USEPA single-sample limit of 400 cfu/100mL fecal coliform bacteria, while none (0%) of the samples exceeded the single-sample limit for E. coli (n=194). Regression analyses found a positive correlation between total and fecal coliform bacteria (R=0.50, significant at p<0.001) and between enterococci and E. coli (R=0.51, significant at p<0.001), but no correlation or inverse correlations were found between coliform concentrations and enterococci and E. coli levels. External sources responsible for the high total and fecal coliform bacteria were not identified, although laboratory studies demonstrated growth of the coliform bacteria in lake water samples. Enterococci and E. coli were not observed to grow, however. Bacteria concentrations varied relatively little laterally across the lake, although strong vertical gradients in fecal coliform and enterococcus bacteria concentrations were present during summer stratification, with concentrations about 10x higher above the thermocline when compared with surface concentrations. In contrast, total bacteria, total virus and total coliform bacteria levels were unchanged with depth. Seasonal trends in bacteria concentrations were also present. This study shows that the choice of indicator bacteria and sampling depth can both strongly affect the apparent microbial water quality of a lake or reservoir.  相似文献   

11.
Edge TA  Hill S 《Water research》2007,41(16):3585-3594
Multiple microbial source-tracking methods were investigated to determine the source of elevated Escherichia coli levels at Bayfront Park Beach in Hamilton Harbour, Lake Ontario. E. coli concentrations were highest in wet foreshore sand (114,000 CFU/g dry sand) and ankle-depth water (177,000 CFU/100mL), declining rapidly in deeper waters. Many gull and geese droppings were enumerated each week on the foreshore sand within 2m of the waterline. Both antimicrobial resistance analysis and rep-PCR DNA fingerprinting of E. coli collected at the beach and nearby fecal pollution sources indicated that E. coli in sand and water samples were predominantly from bird droppings rather than from pet droppings or municipal wastewater. Both methods indicated a trend of decreasing bird contamination, and increasing wastewater contamination, moving offshore from the beach. When foreshore sand was treated as a reservoir and secondary source of E. coli, waterborne E. coli were found to be more similar to sand isolates than bird or wastewater isolates out to 150 m offshore. Multiple lines of evidence indicated the importance of bird droppings and foreshore sand as primary and secondary sources of E. coli contamination in beach water at Bayfront Park.  相似文献   

12.
Kay D  Kershaw S  Lee R  Wyer MD  Watkins J  Francis C 《Water research》2008,42(12):3033-3046
Field surveys were designed to examine the effects of sewage contamination from storm overflow effluent on faecal coliform and Escherichia coli concentrations in the flesh of wild mussels (Mytilus edulis). Bags containing 30 mussels each were fixed at known inter-tidal locations and retrieved at intervals following discharge from a nearby combined sewer overflow (CSO). Concentrations of faecal coliform bacteria and E. coli were measured in the shellfish flesh and in samples of overlying water prior to collection of the mussel samples. Faecal coliform and E. coli concentrations in shellfish increased rapidly after CSO discharge. E. coli concentrations exceeded the European shellfish hygiene class C limit of 46,000 100g(-1), and decayed during subsequent CSO discharge-free periods. The concentration and depuration response was independent of the magnitude of CSO spill volume. First-order exponential decay functions were fitted to the data. Decay rates were lower than those found in corresponding microcosm experiments. This relates to the repeated pattern of inundation and exposure associated with the tidal cycles in the estuary. Relationships between E. coli and faecal coliform concentrations in the shellfish and overlying water samples were relatively weak (r<0.60), a pattern often seen with data from uncontrolled environmental experiments.  相似文献   

13.
In the United States our objective is to protect drinking water at the source,during treatment and during distribution. In 1975 interim regulations for bacteria and turbidity, 10 inorganic chemicals, 6 organic chemicals end radionuclides were promulgated. In 1979 National Seccndary Regulations for substances affecting the aesthetic quality of water were promulgated. In 1979 trihalomethanes were added, The United States is engaged in comprehensive revisions of the National Primary Drinking Water Regulations.The areas of our most significant concern include detection and control of contamination of ground waters by organic chemicals resulting from improper waste disposal practices, a reassessment of microbiological regulations and toxicity of disinfectant by-products and a major effort to deal with corrosion-related contamination of drinking water during distribution. We are evaluating the issue of a granular activated carbon requirement for contaminated surface waters. A program to assure the quality of direct and indirect additives to drinking water has also been initiated. Part of this activity will include determination of the contaminants and by-products associated with the use of various water treatment chemicals and pipe materials.  相似文献   

14.
Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli–Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p < 0.01). Detection of E. coli was rare in continuous supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply.  相似文献   

15.
Comprehensive regulations are being developed to limit human exposure to contamination in drinking water by the United States Environmental Protection Agency (EPA) under the authority of the Safe Drinking Water Act (SDWA). These regulations are being developed in several phases and include synthetic organic chemicals, inorganic chemicals, microbiological contaminants and radionuclides. This paper addresses the fundamental concepts and approaches used by EPA in setting drinking water regulations and how EPA is using these concepts to revise the drinking water standard for chromium.  相似文献   

16.
Data on the quality of groundwater obtained from several multi-level monitoring wells indicated that arsenic (As) concentration far exceeds the drinking water supply standard in the coastal aquifer of the Yun-Lin, Taiwan. In this study, an estimated As probability risk was computed using indicator kriging to assess the As contamination potential of exceeding the drinking water supply standard in the Yun-Lin county. A three-dimensional (3D) spatial variability model was presented to analyze anisotropically the variation of As concentration using a multi-level threshold indicator variable. This 3D estimator overcomes the scarcity of the data and establishes a vertical correlation of measured As data. The results indicate high As pollution probability in the coastal area and in the Pei-Kang river basin. The highest probability, 0.92, of the As pollution is in the shallow aquifer of the Kou-Hu. The contamination potential of As is primarily within an aquifer depth of 180 m. The contaminated aquifer (<180 m) is not suitable for supplying drinking water. The contamination potential of As is low at the depths of more than 190 m. However, the probabilities associated with the As pollution still exceed 0.2 in the deep aquifer of four coastal townships of the Yun-Lin, and may pose risks to human health if the groundwater is used for drinking.  相似文献   

17.
Li J  McLellan S  Ogawa S 《Water research》2006,40(16):3023-3028
Biological filters combining microbial activity and rapid sand filtration are used in drinking water treatment plants for enhanced biodegradable organic matters (BOM) removal. Biofilms formed on filter media comprised of bacteria enclosed in a polymeric matrix are responsible for the adsorption of BOM and attachment of planktonic microorganisms. This study investigated the removal of Escherichia coli cells injected into laboratory-scale biofilters and the role of biofilm in retaining the injected E. coli. Green fluorescent protein was used as a specific marker to detect and quantify E. coli in the biofilms. About 35% of the total injected E. coli cells were observed in the filter effluents, when initial cell concentrations were measured at 7.4 x 10(6) CFU/mL and 1.6 x 10(7) CFU/mL in two separate experiments. The results from real-time PCR and plate count analysis indicated that 95% of the E. coli retained inside the filters were either non-viable or could not be recovered by colony counting techniques. Injected cells were unevenly distributed inside the filter with more than 70% located at the top 1/5 of the filter. Images obtained from an epifluorescent microscope showed that E. coli cells were embedded inside the biofilm matrix and presented mainly as microcolonies intertwined with other microorganisms, which was consistent with findings from standard plate count methods and qPCR.  相似文献   

18.
Drinking water systems are vulnerable and subject to a wide range of risks. To avoid sub-optimisation of risk-reduction options, risk analyses need to include the entire drinking water system, from source to tap. Such an integrated approach demands tools that are able to model interactions between different events. Fault tree analysis is a risk estimation tool with the ability to model interactions between events. Using fault tree analysis on an integrated level, a probabilistic risk analysis of a large drinking water system in Sweden was carried out. The primary aims of the study were: (1) to develop a method for integrated and probabilistic risk analysis of entire drinking water systems; and (2) to evaluate the applicability of Customer Minutes Lost (CML) as a measure of risk. The analysis included situations where no water is delivered to the consumer (quantity failure) and situations where water is delivered but does not comply with water quality standards (quality failure). Hard data as well as expert judgements were used to estimate probabilities of events and uncertainties in the estimates. The calculations were performed using Monte Carlo simulations. CML is shown to be a useful measure of risks associated with drinking water systems. The method presented provides information on risk levels, probabilities of failure, failure rates and downtimes of the system. This information is available for the entire system as well as its different sub-systems. Furthermore, the method enables comparison of the results with performance targets and acceptable levels of risk. The method thus facilitates integrated risk analysis and consequently helps decision-makers to minimise sub-optimisation of risk-reduction options.  相似文献   

19.
Ahmed W  Tucker J  Harper J  Neller R  Katouli M 《Water research》2006,40(12):2339-2348
A comparison of the efficacy of an existing large metabolic fingerprint database of enterococci and Escherichia coli with a locally developed database was undertaken to identify the sources of faecal contamination in a coastal lake, in southeast Qld., Australia. The local database comprised of 776 enterococci and 780 E. coli isolates from six host groups. In all, 189 enterococci and 245 E. coli biochemical phenotypes (BPTs) were found, of which 118 and 137 BPTs were unique (UQ) to host groups. The existing database comprised of 295 enterococci UQ-BPTs and 273 E. coli UQ-BPTs from 10 host groups. The representativeness and the stability of the existing database were assessed by comparing with isolates that were external to the database. In all, 197 enterococci BPTs and 179 E. coli BPTs were found in water samples. The existing database was able to identify 62.4% of enterococci BPTs and 64.8% of E. coli BPTs as human and animal sources. The results indicated that a representative database developed from a catchment can be used to predict the sources of faecal contamination in another catchment with similar landuse features within the same geographical area. However, the representativeness and the stability of the database should be evaluated prior to its application in such investigation.  相似文献   

20.
Occurrence and prevalence of different bacterial enteric pathogens as well as their relationships with conventional (total and fecal coliforms) and alternative fecal indicators (host-specific Bacteroides 16S rRNA genetic markers) were investigated for various water samples taken from different sites with different degrees of fecal contamination. The results showed that a wide range of bacterial pathogens could be detected in both municipal wastewater treatment plant samples and in surface water samples. Logistic regression analysis revealed that total and human-specific Bacteroides 16S rRNA genetic markers showed significant predictive values for the presence of Escheriachia coli O-157, Salmonella, heat-labile enterotoxin (LT) of enterotoxigenic E. coli (ETEC), and heat-stable enterotoxin for human (STh) of ETEC. The probability of occurrence of these pathogenic bacteria became significantly high when the concentrations of human-specific and total Bacteroides 16S rRNA genetic markers exceeded 10(3) and 10(4) copies/100 mL. In contrast, Clostridium perfringens was detected at high frequency regardless of sampling sites and levels of Bacteroides 16S rRNA genetic markers. No genes related to Shigella spp., Staphylococcus aureus and Vibrio cholerae were detected in any samples analyzed in this study. Conventional indicator microorganisms had low levels of correlation with the presence of pathogens as compared with the alternative fecal indicators. These results suggested that real-time PCR-based measurement of alternative Bacteroides 16S rRNA genetic markers was a rapid and sensitive tool to identify host-specific fecal pollution and probably associated bacterial pathogens. However, since one fecal indicator might not represent the relative abundance of all pathogenic bacteria, viruses and protozoa, combined application of alternative indicators with conventional ones could provide more comprehensive pictures of fecal contamination, its source and association with pathogenic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号