首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
层状双金属氢氧化物(LDHs)因其优异的性能特别是低成本和结构与组成的可调控性在诸多领域备受关注。LDHs表面的正电荷性质、多羟基以及层间可以进行插层反应等使其较容易与不同的有机分子或有机无机纳米材料进行复合形成功能化层状纳米材料,这更进一步扩展了其应用范围。本文综述了近几年功能化LDHs在传感、催化、超级电容、废水处理及光致发光等方面的应用进展,并总结分析了在这些领域中应用的特点和作用。  相似文献   

2.
利用层状硅酸盐制备多孔材料是多孔材料发展的新趋势.介绍了层状多孔材料的主要用途,以及水热合成法、柱撑法、溶胶-凝胶法和室温酸法等多孔材料制备技术,阐述多孔材料的合成机理,并指出层状硅酸盐制备多孔材料的发展前景.  相似文献   

3.
借助机械球磨法, 成功地利用层状硫化物MoS2对膨胀石墨实现了有效剥离, 得到石墨烯与MoS2的复合材料。球磨处理后, 元素C均匀地分散在复合材料中。MoS2 与膨胀石墨的质量比越高, 得到的复合材料中具有石墨烯特征的石墨就越多, 但相应的石墨烯的缺陷也越多。优化后的复合材料用作锂离子电池负极材料时显示出良好的电池性能, 在小倍率0.1 Ah/g电流密度下充放电循环70次后, 电池容量仍保持在~ 570 mAh/g; 在大倍率1 A/g电流密度下充放电循环55次后, 电池容量仍能保持在~ 450 mAh/g。  相似文献   

4.
花球形貌层状氧化锰的制备及其电化学性能   总被引:1,自引:0,他引:1  
基于高锰酸钾的自分解反应,采用水热法制备了氧化锰材料。研究了温度对产物晶相和形貌的影响。应用XRD、SEM和TEM技术对所得材料的结构和形貌进行了表征,结果表明,140℃所得材料为片状,160℃和180℃所得材料均为层状结构的花球。电化学测试结果表明,180℃所得材料具有良好的电化学性能。在50mA/g的电流密度下,首次充电比容量为849mAh/g。循环50圈后,容量保持率为79%。此外,制备材料具有优异的倍率性能。  相似文献   

5.
对国内外层状二氧化锰的制备方法及相关锰氧化物的应用现状进行综述,详细总结层状二氧化锰主要的制备方法,如固相反应法、水热合成法、溶胶-凝胶法、液相氧化-还原法等,对层状二氧化锰在锂电池电极材料、阳离子交换材料、吸附材料及污染物处理材料等领域的应用进行概述,并对其未来的发展趋势进行展望。结果认为:层状二氧化锰的制备与使用仍是今后一段时间内重点发展对象。固相法是在实际生产和研究实验中应用最多的一种方法,而液相法则因低投入、低能耗、污染小,是值得大力发展和推广的制备工艺路线。制备技术的不断成熟将使层状二氧化锰具有更广阔的应用前景。  相似文献   

6.
7.
MoS2独特的三明治结构使其具有良好的化学性质,以MoS2为基础的复合材料在负极、催化、润滑等方面都有着广阔的应用前景,它的制备和应用是目前我国的一个热点研究方向。综述了近年来纳米MoS2的制备方法,主要介绍了前驱体分解法、水热法、模板法、微波合成法和剥层重堆积法,研究了不同的反应条件对MoS2的影响。此外,阐述了以MoS2为基础的复合材料在负极、催化方面的研究进展,同时对它的前景做了展望。  相似文献   

8.
我国层状复合电触头材料的研究现状及进展   总被引:3,自引:0,他引:3  
综述了我国层状复合电触头材料在复合方法、界面扩散、界面结合强度和接触电阻等方面的研究现状,分析了我国电触头材料研究存在的问题和发展趋势。  相似文献   

9.
综述了近年来国内外应用于锂离子电池负极材料的类石墨烯MoS2基材料的研究进展。简要介绍了其晶体结构、制备方法、嵌锂反应机理,并详细介绍了2H-MoS2基材料在锂离子电池负极领域的研究进展,包括水热法、硬模板法和溶剂热法制备特殊形貌的2H-MoS2,以及无定形碳、介孔碳分子筛、碳纳米管、石墨烯/2H-MoS2复合材料及高分子聚合物/C/2H-MoS2复合材料的最新研究现状。  相似文献   

10.
二维过渡族金属碳化物/氮化物(MXene)是二维材料家族的新兴成员,通过液相刻蚀等方法移除MAX相的A层得来.独特的二维结构及表面化学组成,使其表现出了良好的金属导电性、亲水性、优异的柔韧性及离子可插层性,在超级电容器研究与应用领域展现了巨大的潜力,受到了广泛关注.但是MXene仍存在诸多问题.首先,片层容易发生堆叠,...  相似文献   

11.
Rapidly evolving group-10 transition metal dichalcogenides (TMDCs) offer remarkable electronic, optical, and mechanical properties, making them promising candidates for advanced optoelectronic applications. Compared to most TMDCs semiconductors, group-10-TMDCs possess unique structures, narrow bandgap, and influential physical properties that motivate the development of broadband photodetectors, specifically infrared photodetectors. This review presents the latest developments in the fabrication of broadband photodetectors based on conventional 2D TMDCs. It mainly focuses on the recent developments in group-10 TMDCs from the perspective of the lattice structure and synthesis techniques. Recent progress in group-10 TMDCs and their heterostructures with different dimensionality of materials-based broadband photodetectors is provided. Moreover, this review accounts for the latest applications of group-10 TMDCs in the fields of nanoelectronics and optoelectronics. Finally, conclusions and outlooks are summarized to provide perspectives for next-generation broadband photodetectors based on group-10 TMDCs.  相似文献   

12.
氧还原(ORR)反应是燃料电池等清洁能源阴极的关键反应, 其反应动力学复杂, 阴极需使用Pt等贵金属催化剂。然而Pt价格昂贵, 且载体炭黑在高电位环境下稳定性欠佳, 导致电池部件成本高且寿命短。二维过渡金属硫属化合物(2D TMDs)具有高比表面积与可调节的电学性能, 且稳定性强, 有望在维持活性的同时提高燃料电池阴极的耐久性。本文梳理了近年来2D TMDs在ORR催化剂领域的最新研究进展: 首先概述了2D TMDs的结构、性质及ORR反应机理; 其次分析了调控2D TMDs的ORR性能策略, 包括异质元素掺杂、相转变、缺陷工程与应力工程等, 介绍了2D TMDs基异质结构对ORR性能的提升作用; 最后, 针对该领域目前存在的挑战进行展望与总结。  相似文献   

13.
In recent years, 2D layered materials have received considerable research interest on account of their substantial material systems and unique physicochemical properties. Among them, 2D layered transition metal dichalcogenides (TMDs), a star family member, have already been explored over the last few years and have exhibited excellent performance in electronics, catalysis, and other related fields. However, to fulfill the requirement for practical application, the batch production of 2D TMDs is essential. Recently, the chemical vapor deposition (CVD) technique was considered as an elegant alternative for successfully growing 2D TMDs and their heterostructures. The latest research advances in the controllable synthesis of 2D TMDs and related heterostructures/superlattices via the CVD approach are illustrated here. The controlled growth behavior, preparation strategies, and breakthroughs on the synthesis of new 2D TMDs and their heterostructures, as well as their unique physical phenomena, are also discussed. Recent progress on the application of CVD‐grown 2D materials is revealed with particular attention to electronics/optoelectronic devices and catalysts. Finally, the challenges and future prospects are considered regarding the current development of 2D TMDs and related heterostructures.  相似文献   

14.
A new approach of vacancy‐driven gelation to obtain chemically crosslinked hydrogels from defect‐rich 2D molybdenum disulfide (MoS2) nanoassemblies and polymeric binder is reported. This approach utilizes the planar and edge atomic defects available on the surface of the 2D MoS2 nanoassemblies to form mechanically resilient and elastomeric nanocomposite hydrogels. The atomic defects present on the lattice plane of 2D MoS2 nanoassemblies are due to atomic vacancies and can act as an active center for vacancy‐driven gelation with a thiol‐activated terminal such as four‐arm poly(ethylene glycol)–thiol (PEG‐SH) via chemisorption. By modulating the number of vacancies on the 2D MoS2 nanoassemblies, the physical and chemical properties of the hydrogel network can be controlled. This vacancy‐driven gelation process does not require external stimuli such as UV exposure, chemical initiator, or thermal agitation for crosslinking and thus provides a nontoxic and facile approach to encapsulate cells and proteins. 2D MoS2 nanoassemblies are cytocompatible, and encapsulated cells in the nanocomposite hydrogels show high viability. Overall, the nanoengineered hydrogel obtained from vacancy‐driven gelation is mechanically resilient and can be used for a range of biomedical applications including tissue engineering, regenerative medicine, and cell and therapeutic delivery.  相似文献   

15.
16.
Alloying/doping in 2D material is important due to wide range bandgap tunability. Increasing the number of components would increase the degree of freedom which can provide more flexibility in tuning the bandgap and also reduces the growth temperature. Here, synthesis of quaternary alloys Mox W1?x S2y Se2(1?y ) is reported using chemical vapor deposition. The composition of alloys is tuned by changing the growth temperatures. As a result, the bandgap can be tuned which varies from 1.61 to 1.85 eV. The detailed theoretical calculation supports the experimental observation and shows a possibility of wide tunability of bandgap.  相似文献   

17.
18.
The optimization of traditional electrocatalysts has reached a point where progress is impeded by fundamental physical factors including inherent scaling relations among thermokinetic characteristics of different elementary reaction steps, non‐Nernstian behavior, and electronic structure of the catalyst. This indicates that the currently utilized classes of electrocatalysts may not be adequate for future needs. This study reports on synthesis and characterization of a new class of materials based on 2D transition metal dichalcogenides including sulfides, selenides, and tellurides of group V and VI transition metals that exhibit excellent catalytic performance for both oxygen reduction and evolution reactions in an aprotic medium with Li salts. The reaction rates are much higher for these materials than previously reported catalysts for these reactions. The reasons for the high activity are found to be the metal edges with adiabatic electron transfer capability and a cocatalyst effect involving an ionic‐liquid electrolyte. These new materials are expected to have high activity for other core electrocatalytic reactions and open the way for advances in energy storage and catalysis.  相似文献   

19.
20.
Reducing the dimensions of materials is one of the key approaches to discovering novel optical phenomena. The recent emergence of 2D transition metal dichalcogenides (TMDCs) has provided a promising platform for exploring new optoelectronic device applications, with their tunable electronic properties, structural controllability, and unique spin valley–coupled systems. This progress report provides an overview of recent advances in TMDC‐based light‐emitting devices discussed from several aspects in terms of device concepts, material designs, device fabrication, and their diverse functionalities. First, the advantages of TMDCs used in light‐emitting devices and their possible functionalities are presented. Second, conventional approaches for fabricating TMDC light‐emitting devices are emphasized, followed by introducing a newly established, versatile method for generating light emission in TMDCs. Third, current growing technologies for heterostructure fabrication, in which distinct TMDCs are vertically stacked or laterally stitched, are explained as a possible means for designing high‐performance light‐emitting devices. Finally, utilizing the topological features of TMDCs, the challenges for controlling circularly polarized light emission and its device applications are discussed from both theoretical and experimental points of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号