共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
迭代粒子群算法及其在间歇过程鲁棒优化中的应用 总被引:1,自引:0,他引:1
针对无状态独立约束和终端约束的间歇过程鲁棒优化问题,将迭代方法与粒子群优化算法相结合,提出了迭代粒子群算法.对于该算法,首先将控制变量离散化,用标准粒子群优化算法搜索离散控制变量的最优解.然后在随后的迭代过程中将基准移到刚解得的最优值处,同时收缩控制变量的搜索域,使优化性能指标和控制轨线在迭代过程中不断趋于最优解.算法简洁、可行、高效,避免了求解大规模微分方程组的问题.对一个间歇过程的仿真结果证明了迭代粒子群算法可以有效地解决无状态独立约束和终端约束的间歇过程鲁棒优化问题. 相似文献
3.
针对具有冗余执行机构的过驱动系统, 在考虑控制效率不确定性的条件下, 提出了一种基于鲁棒优化理论的控制分配算法. 研究了原始不确定鲁棒优化模型的建立和基于椭球不确定集的鲁棒对等式的转化问题, 并推广到可由锥二次不等式表示的不确定集的情况. 讨论了鲁棒优化控制分配算法的求解方法及其计算复杂度. 最后, 针对多操纵面飞机的最优控制分配问题与传统算法进行了仿真比较, 结果表明鲁棒优化算法能有效降低控制效率不确定性的影响, 使分配结果更为合理, 从而具有更好的鲁棒性, 同时能有效提高操纵面故障情况下闭环系统的控制重构能力, 很好地改善了飞控系统的性能. 相似文献
4.
针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为单层优化模型;对于机组效能不确定性,采用场景法进行分析.最后,采用多目标优化约束处理方法处理鲁棒优化调度模型中的约束条件.同时,为更加高效、准确求解所构建的优化调度模型,提出了一种邻域自适应粒子群优化算法(NAPSO).实验结果表明,在制冷和制热工况下,与经验运行策略相比,本文所提方法可分别减少7.22%和5.55%的系统运行成本,是一种解决地源热泵区域能源系统鲁棒优化调度的有效方法. 相似文献
5.
为了解决实际生产中的动态多目标优化问题,提出一种基于多场景建模的动态鲁棒多目标进化优化算法.首先,所提出算法将不同环境下的问题视为不同场景,并通过相似度计算和场景聚类建立多个场景;然后,利用改进的多场景多目标进化优化算法求解各场景的折中解,当环境发生变化时,根据新问题所属的场景类,直接应用该场景类的折中解作为新问题的最优解,从而加快算法的响应速度;最后,通过对场景类中问题的约减,保留最具代表性的问题,逐步提高算法的鲁棒性,并降低解的切换成本.实验结果表明,所提出算法能够快速响应环境变化,并提高解的鲁棒性. 相似文献
6.
针对目标函数系数和约束条件系数均在椭球扰动集下的不确定多目标线性规划, 提出了椭球扰动集下的鲁棒多目标线性规划问题。基于每个目标均需获得鲁棒解的假设下给出了定理及证明, 以此把原问题转换为具有二阶锥约束的确定性多目标优化问题。设计了一种混合策略求解算法, 整体流程采用多目标遗传算法, 局部采用SOCP优化软件Sedumi进行计算, 从而获得不确定多目标线性规划的鲁棒解集, 并通过数值算例验证了该算法的有效性。 相似文献
7.
针对现有的时域鲁棒优化算法无法解决带约束的优化问题,基于群智能优化方法,提出一种求解带约束优化问题的时域鲁棒优化算法.首先,用约束条件构造罚函数,将带约束优化问题处理成为无约束优化问题;然后,采用一个分段函数作为粒子的适应度评价函数,通过竞争规则筛选粒子,设计带约束问题的时域鲁棒优化算法.以优化碳纤维原丝的性能为背景,将算法在多组参数下进行测试和对比分析,结果表明了所提出算法的有效性.进一步分析AR模型对算法性能的影响,指出预测模型的改进是提升算法性能的一个重要手段. 相似文献
8.
9.
吴烈 《计算机工程与应用》2008,44(17):212-214
提出了一种搜索鲁棒优化解的粒子群算法。为解决期望适值函数计算需要大量新采样点而导致的计算效率过低问题,提出了一种期望适值赋值的新机制。该机制只对每一代粒子中的个体最优解和整体最优解分配期望适值。此外,为便于算法搜索鲁棒优化解,重新定义了粒子的邻域关系。最后,通过两个实例计算证明了新算法求解电磁场逆问题鲁棒优化解的可行性和优点。 相似文献
10.
随着时间的推移,鲁棒优化是解决动态优化问题的一种新方法,其目标是找到在很长一段时间内仍然可以接受的解决方案。该领域中大多试图根据其未来预测适应度值来寻找新的鲁棒解决方案,然而,预测未来的适应度值的误差往往偏大,对其寻求较好的鲁棒解造成较大的困难。针对这一问题,提出了一个基于问题特征变化引导的算法框架(ROOT-PFCG)来进行动态鲁棒优化。其问题特征变化情况主要参考解在当前环境下的目标函数值和相应相邻环境下的目标函数浮动值,由此提出三个重要指标。在预测和非预测的情况下,基于指标分别提出了三种不同的适应度决策规则来选解,保证其所选解受预测误差影响较小或不受影响,以此寻找更优的鲁棒解,并在此基础上提出了新的性能评价指标。在基准问题上的实验结果表明,所提出的算法能更好地提升鲁棒解的性能,并对不同情况下的指标进一步分析了其对性能的影响,在此基础上分析了更好的指标结合方法。 相似文献
11.
12.
重大传染疾病大规模爆发时,现有医疗服务不能满足当前治疗需求,方舱医院能否及时合理地建成,直接影响人民群众的生命安全及疾病控制效果,但疾病感染人数随时间波动且高度不确定增加了决策的难度。针对该问题,从数据驱动的视角,构建以预期最小的服务能力满足最大的预期治疗需求和预期总加权距离最小为目标的多周期方舱医院鲁棒追踪选址模型。首先利用sigmoid函数对累计诊断数据进行学习,预测感染人数及趋势。其次引入box不确定集合刻画预测感染人数的不确定性,运用鲁棒优化控制预测数据的精准度。然后通过鲁棒对等理论将模型转化为混合整数规划,并基于Python的SCIPY和GUROBIPY模块设计求解方法。最后以武汉应急方舱医院选址为例,验证模型的可行性和有效性。结果表明鲁棒追踪选址具有较强的鲁棒性,在资源稀缺的情况下,能够满足大部分周期治疗需求,在资源充足的情况下,能够满足所有周期的治疗需求且未造成资源浪费。 相似文献
13.
投资组合模型中期望收益等参数的估计误差对最优投资组合策略的稳定性产生重要影响. 在提出考虑复杂约束和交易成本的鲁棒均值-CVaR投资组合模型的基础上, 设计改进粒子群算法来求解该模型. 应用实际交易数据对所提出的模型和算法进行数值实验和比较, 结果表明改进粒子群算法能有效地求解该模型, 产生更稳定的最优投资策略, 从而能够更好地适合实际投资环境. 相似文献
14.
不确定应急物流中心选址模型及算法研究 总被引:1,自引:0,他引:1
考虑不同情景下应急物流需求的不确定性, 将不确定需求用区间灰数表示, 构建了多情景下不确定需求的应急物流配送中心选址模型, 基于联系数理论, 将区间灰数转换为联系数, 使模型转换为确定性, 并设计了免疫量子粒子群算法进行求解。通过算例对模型进行仿真, 并说明了免疫量子粒子群算法的有效性。 相似文献
15.
传统动态多目标优化问题(Dynamic multi-objective optimization problems,DMOPs)的求解方法,通常需要在新环境下,通过重新激发寻优过程,获得适应该环境的Pareto最优解.这可能导致较高的计算代价和资源成本,甚至无法在有限时间内执行该优化解.由此,提出一类寻找动态鲁棒Pareto最优解集的进化优化方法.动态鲁棒Pareto解集是指某一时刻下的Pareto较优解可以以一定稳定性阈值,逼近未来多个连续动态环境下的真实前沿,从而直接作为这些环境下的Pareto解集,以减小计算代价.为合理度量Pareto解的环境适应性,给出了时间鲁棒性和性能鲁棒性定义,并将其转化为两类鲁棒优化模型.引入基于分解的多目标进化优化方法和无惩罚约束处理方法,构建了动态多目标分解鲁棒进化优化方法.特别是基于移动平均预测模型实现了未来动态环境下适应值的多维时间序列预测.基于提出的两类新型性能评价测度,针对8个典型动态测试函数的仿真实验,结果表明该方法得到满足决策者精度要求,且具有较长平均生存时间的动态鲁棒Pareto最优解. 相似文献
16.
17.
基于鲁棒优化的系统辨识算法研究 总被引:1,自引:0,他引:1
输入-输出数据是解决系统辨识问题的关键要素,传统的辨识理论除了假定影响输入-输出数据干扰的密度函数已知外,还要假定输入-输出数据能够精确获得,完全忽略了所用数据的质量.本文突破了传统理论的两个假设,首先用工程上易于获得的干扰的有界集合代替干扰的密度函数,并在特定数据不确定性结构下,考虑了数据质量问题,然后,以半定规划为基础,导出了鲁棒对等式,从而将系统辨识转化为对数据质量具有鲁棒性的优化问题,通过求解该优化问题,得到了一种新的鲁棒优化辨识方法,仿真结果表明了新方法的可行性和有效性. 相似文献
18.
19.
20.
为解决裁剪优化分配问题,根据分床裁剪实际情况,结合订单信息,以用料成本、利用率、分床裁剪时间为目标,建立多目标优化数学模型。最后采用粒子群优化算法对既定模型进行求解,数据测试结果表明,该模型优化效果较好。 相似文献