首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
赵子炜  艾红 《煤矿机械》2015,36(7):303-305
为了解决振动机械滚动轴承故障诊断问题,提出一种基于高阶谱的滚动轴承故障诊断方法。当滚动轴承开始工作时,提取振动信号,针对滚动轴承的双谱结构图、等高线图和三谱二维切片图在正常情况和故障情况下的不同进行对比。理论分析与试验分析结果一致表明,机械滚动轴承在不同状态下故障特征频谱区别明显,可以成功实现对不同故障的识别和诊断。  相似文献   

2.
李肖  潘宏侠 《煤矿机械》2013,34(7):302-304
HHT(Hilbert-Huang变换)是一种适合处理非平稳和非线性过程的信号处理方法。提出了一种基于HHT的时域边际谱方法。该方法与传统Hilbert边际谱不同,代表单位时间内幅度的累加,体现信号时域特性。在滚动轴承的实验中,能够成功辨识滚动轴承内圈和外圈的故障特征,验证了该方法处理滚动轴承故障的可行性。  相似文献   

3.
《煤炭技术》2017,(2):254-256
结合隐马尔可夫模型(HMM)所需训练样本少及可解释的优点,提出了基于HMM的矿井提升机故障诊断方法。利用多个加速度传感器在提升机运行的不同转速阶段采集数据,通过快速傅里叶变换(FFT)从提升机振动信号中进行特征抽取后,再由劳埃德算法(Lloyd)进行标量量化,根据HMM建模理论,训练HMM诊断库,再利用训练好的HMM对提升机进行状态监测和故障诊断。  相似文献   

4.
提出一种新的滚动轴承故障信号处理方法—复小波多尺度包络谱,通过分析连续小波变换后各尺度信号的包络谱来识别滚动轴承缺陷频率,以此来诊断滚动轴承的外圈、内圈和滚动体故障,该方法解决了传统包络解调方法在操作中需要确定滤波器中心频率和带宽的难题,实验证明了该方法的有效性。  相似文献   

5.
提出了一种改进的集总平均经验模式分解(MEEMD)滚动轴承的故障提取方法。对采集得到的振动信号进行MEEMD分解,获得不同频率的本征模式函数(IMF);对各个本征模式函数进行包络谱分析;最后通过包络谱特性反映出来的频谱信息诊断出轴承故障。滚动轴承内外圈故障仿真和实验研究表明:MEEMD方法能有效地应用于轴承的故障诊断。  相似文献   

6.
吕楠  姚平喜 《煤矿机械》2020,41(8):172-173
滚动轴承在煤机设备中广泛应用,在恶劣工况下容易发生故障。为了能够及时准确地获取滚动轴承的运转状态,采用BP神经网络算法与小波函数对轴承振动信号进行分解,从而对滚动轴承进行状态监测以及故障诊断。实验结果表明,BP神经网络能够准确获得滚动轴承的运动状态及故障类型。  相似文献   

7.
《煤矿机械》2013,(10):258-260
滚动轴承是煤矿机械中很重要的零部件,也是最容易发生故障的零部件之一。对煤矿机械滚动轴承的故障诊断研究是一个很热的方向。提出了一种将独立量分析和小波包能量谱相结合的故障特征提取方法,并采用此方法对滚动轴承进行了故障特征提取。实验结果说明采用独立量分析和小波包能量谱相结合的方法对滚动轴承故障进行提取的效果要明显优于单独使用小波包能量谱的方法。这种故障特征提取方法对其他设备的故障诊断也都适用。  相似文献   

8.
分析了循环自相关函数和循环谱密度函数的解调性能、对噪声的免疫性能及其运算量大的局限性,兼顾故障特征提取的准确性和计算量,提出了峰值频率切片集合分析法:取循环自相关切片图上的各峰值频率作为循环频率分别做循环谱密度切片图,然后对图中f域的谱峰规律进行分析。滚动轴承故障实验表明该方法能有效排除非故障频率干扰,快速诊断出弱小故障。  相似文献   

9.
通过应用专家系统对滚动轴承故障进行诊断,在专家系统的知识库中输入了有丰富经验的维修人员通过看、听、触、测得到的故障现象和排除故障的方法,该系统通过人机交互界面实现,使维修人员可以快速找出滚动轴承的故障并进行排除,节约时间,提高效率。  相似文献   

10.
方群玲  李肖 《煤矿机械》2014,(3):242-243
从振动信号中提取故障特征是滚动轴承故障诊断的常用方法。提出了利用零空间追踪算法和包络谱分析进行滚动轴承故障诊断的方法。首先对轴承故障振动信号进行零空间追踪(Null Space Pursuit)分解,降低噪声的干扰,提取高能量成分。然后对高能量分量进行包络谱分析得到振动信号特征频率,与理论故障特征频率对比后确定故障类型。仿真和试验结果显示该方法能够成功提取特征频率,辨别轴承故障类型,具有一定的实际意义。  相似文献   

11.
基于小波包与隐马尔可夫的矿井提升机主轴故障诊断   总被引:1,自引:0,他引:1  
刘旭  朱宗玖  杨明亮 《煤炭技术》2022,41(1):214-216
为解决当前矿井提升机主轴故障数据提取困难且诊断方法存在易受干扰、误差大、准确度低等缺点,设计了基于小波包与隐马尔可夫(HMM)的矿井提升机主轴故障诊断模型。该模型预先把主轴振动信号用小波包分解来获取小波包能量,再把高能量频带CEEMD分解,选取相关系数满足条件的IMF分量完成信号重构,通过重构信号来获得特征参数并构建特征向量,然后对每种故障完成HMM训练,构建HMM故障识别库,并把测试样本送入库中完成测试,从而测试模型的准确度。测试数据表明了基于小波包与HMM的故障诊断模型,准确度高、误差小、抗干扰能力强,比较适用于故障诊断。  相似文献   

12.
基于软件共振解调分析的滚动轴承故障诊断   总被引:2,自引:0,他引:2  
滚动轴承故障诊断是机械故障检测中一个重要方面 ,共振解调是一种有效分析滚动轴承故障信号的方法。使用软件编程实现共振解调分析 ,在成功完成故障信息提取的同时 ,降低了系统的成本  相似文献   

13.
周宇  韩捷  李志农  屈海涛 《煤矿机械》2007,28(6):183-185
分数阶傅立叶变换(FRFT)是经典傅立叶变换的广义形式,它克服了经典傅立叶变换在故障特征提取中存在不足,可同时从时间域和频率域(或空间域)揭示信号特征。论述了分数阶Fourier变换的定义、特点和算法,并进行实验研究。实验结果表明,只要选择合适的分数阶数,可取得比传统傅立叶变换更好的效果。  相似文献   

14.
介绍了基于共振解调技术的滚动轴承故障诊断原理及方法,并研究了煤矿通风机典型故障的轴承特性振动频率。通过采集振动信号和频谱分析,有效、可靠地诊断出某矿通风机轴承的故障、类型和部位,及早发现了故障,避免了事故进一步恶化的危险。案例分析证明了共振解调技术在滚动轴承故障诊断中的可行性。  相似文献   

15.
针对滚动轴承振动信号复杂及故障类型难以预知的问题,提出一种基于模拟退火粒子群算法(SAPSO)优化小波神经网络来诊断滚动轴承故障的新方法,并将其应用于滚动轴承故障诊断。实验表明,该方法能减少迭代次数、提高收敛精度。  相似文献   

16.
基于EMD和样本熵的滚动轴承故障SVM识别   总被引:3,自引:1,他引:3  
针对滚动轴承振动信号的非平稳特性和在现实条件下难以获取大量故障样本的实际情况,提出一种经验模态分解、非线性动力学方法—样本熵和支持向量机相结合的故障诊断方法。运用经验模态分解方法对其去噪信号进行分析,利用互相关系数准则对固有模式分量进行筛选,再计算所选分量的样本熵以组成故障特征向量,并将其作为支持向量机的输入以识别滚动轴承的状态。利用实际滚动轴承试验数据的诊断与对比试验验证了该方法的有效性和泛化能力。  相似文献   

17.
李然  朱希安  王占刚 《煤矿机械》2020,41(3):163-166
针对传统EMD易产生模态混叠,原始SVM、RVM方法存在核函数选取困难、识别效率低等问题,提出一种基于变分模态分解(VMD)、排列熵(PE)以及混合蝙蝠算法(BA)优化的多分类相关向量机(M-RVM)的轴承故障智能诊断方法。首先,VMD分解故障信号,获得本征模态函数(IMF);然后将PE用于IMF的故障特征提取过程,形成特征序列;最后,将所得的特征序列输入基于混合BA优化的M-RVM故障诊断模型,对不同故障进行分类识别。对试验数据的分析结果表明,基于VMD-PE与M-RVM的滚动轴承故障诊断可以提高轴承故障诊断的准确度。  相似文献   

18.
针对低速重载轴承特点 ,提出了适合于低速重载轴承故障诊断的共振解调方法。通过自制的低频加速度传感器拾取了斗轮式堆取料机回转支承滚动轴承的振动信号 ,利用此方法进行了故障诊断 ,诊断结果可靠  相似文献   

19.
介绍几种传统的支持向量机(SVM),提出了一种基于次序二叉树支持向量机的多类分类算法。该算法采用样本分布半径和分布距离估算各类别样本在高维特征空间中的分布情况,更精确地确定其在特征空间中的分类区域。利用该算法对提升机制动系统的故障诊断进行仿真分析,结果表明,该方法具有诊断速度快且故障识别率高的特点。  相似文献   

20.
基于振动信号分析的采煤机摇臂轴承故障诊断研究   总被引:1,自引:0,他引:1  
针对采煤机摇臂轴承故障频发,严重影响采煤工作面安全生产的现状,进行了基于振动信号分析的采煤机摇臂轴承故障诊断研究。为准确识别采煤机摇臂轴承故障,采用集合经验模态分解方法(EEMD)对原始振动信号进行分解,提取前8个本征模态函数的能量占信号总能量的比例作为故障特征信息,并输入到支持向量机(SVM)进行故障模式识别。试验结果表明,结合集合经验模态分解和支持向量机的故障诊断方法,适用于处理采煤机摇臂轴承产生的非平稳、非线性振动信号,总体故障识别率达到88.33%,可实现轴承故障的准确诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号