首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对常规工艺对连云港地区受污染水源水处理效果有限的问题,进行了中置式高密度沉淀池中试研究。结果表明,增大污泥回流比和PAC投加量能够有效降低出水浊度;投加PAM可以提高回流污泥浓度,降低混凝剂用量,改善絮凝效果。当回流比为0.040,PAM投加量为0.08mg/L,PAC投加量为25 mg/L时,出水浊度为1.0 NTU。  相似文献   

2.
采用石灰软化曝气法考察了西安某地地下水曝气软化过程中石灰、PAC和PAM的复合处理效果,并确定药剂最佳投加量及各项运行参数。结果表明,当石灰投加量为80 mg/L时,硬度和暂时硬度的去除率为48.10%和97.22%,混凝和沉淀过程对硬度及暂时硬度的去除效果影响不大;投加石灰后浊度明显升高,当PAC投加量为20 mg/L,PAM投加量为0.5 mg/L时,在最佳运行参数条件下可使处理水浊度稳定降低至2 NTU以下。石灰曝气软化法能有效去除水中硬度、暂时硬度和浊度,处理水煮沸后不再形成沉淀和悬浮物,该方法曝气软化过程吨水运行成本约为0.589元。  相似文献   

3.
在常规处理条件下,对西南地区突发性非多砂高浊度原水进行了加药条件优化试验.结果表明,采用单级絮凝、分级沉淀工艺,先投加PAC,60~120 s后投加PAM,对高浊度原水有良好的去除效果.原水浊度为15 000 NTU时,投加200 mg/L PAC、0.4~0.5 mg/L PAM,静沉30 min后.出水浊度为1.7...  相似文献   

4.
在实验室运用二次通用旋转组合设计研究苏州河道水处理工艺,系统分析了磁絮凝工艺处理苏州河道水的四个影响因素(PAC投加量、PAM投加量、磁粉投加量、沉淀时间)对磁絮凝效果的影响效应。并运用方差分析、回归模型方程分析、单因子效应分析以及双因素交互效应分析,得出最佳工况为PAC投加量15 mg/L、PAM投加量0.58 mg/L、磁粉投加量2.7 mg/L、沉淀时间2.1 min,此时理论上浊度可达到0.73 NTU,浊度去除率为97.2%,用此参数进行试验,得到实际浊度为0.82 NTU,实际浊度去除率可达96.9%。  相似文献   

5.
通过分析不同药剂配比条件下,聚氯化铝(PAC)、聚氯化铝铁(PAFC)、氯化铁(FeCl3)对引江原水的处理效果,研究了PAFC在净水厂实际运行过程中的适用性和实操性,以达到丰富净水厂水处理工艺的目标。结果表明,单独投加30 mg/L的PAFC时处理效果最优,对浊度的去除率为96.52%、对CODMn的去除率为61.53%,投加40 mg/L的PAFC仍可保证出厂水中残余铝符合《生活饮用水卫生标准》(GB 5749—2006)小于0.2 mg/L的要求。采用PAC或PAFC复配投加FeCl3的处理效果接近,当总投药量为30 mg/L时,对浊度的去除率约为93.29%,对CODMn的去除率约为61.38%。总的来说,在出厂水水质符合国家标准及水厂内控指标条件下,综合考虑药剂的使用效果及经济成本,实际运行中可根据原水水质特点合理采用不同的药剂配比。  相似文献   

6.
本研究以近期台风天降雨时水源水为研究对象,模拟混凝沉淀工艺烧杯试验,改变聚合氯化铝(PAC)投加量、聚丙烯酰胺(PAM)投加量和水源水p H值因素,进行单因素实验和正交实验确定最佳混凝条件为PAC投加量为6 mg/L,PAM投加量为20μg/L,生产用水p H调为8.5。在上述最佳处理条件下,水源水浊度由48.5NTU经过10分钟的沉淀降为3.4NTU,浊度去除率为92.99%,有效减轻滤池的过滤负荷。  相似文献   

7.
采用混凝沉淀法对焦化废水蒸氨残液进行预处理,通过单因素优化试验,考察了PAFC投加量、FeCl_3投加量、PAM投加量和反应初始pH等影响因素对废水COD、色度的去除效果和沉淀后絮体形成量及特性,确定各影响因素的最佳运行条件。研究结果表明,当PAFC投加量为2 500mg/L、FeCl_3投加量为350mg/L、PAM投加量为3mg/L、反应pH值为9时,反应达到最佳反应条件,对焦化废水蒸氨残液的COD、色度去除率分别为19.51%、70%左右。混凝沉淀处理降低了废水的有机物浓度,提高了废水的可生化性。  相似文献   

8.
微污染源水的处理已经成为一个重要课题并在全世界范围内引起广泛关注,其中的浊度、腐殖质等影响到了饮用水水质。混凝是一种安全、实用、高效的水处理技术,而混凝剂是混凝技术的核心,选择一种合适的混凝剂至关重要。以硫酸铝(AS)、聚合氯化铝(PAC)、氯化铁、聚合氯化铁(PFC)等4种混凝剂处理微污染源水,再分别与助凝剂PAM、活化硅酸(ASI)复配使用,PAM与ASI具有较好的吸附架桥能力,大大提高了絮凝效率。通过检测浊度、UV254、絮体粒径3个指标,得出这4种混凝剂单独使用时的最佳投加量分别为22、18、16、8mg/L;与PAM复配使用时PAM的最佳投加量分别为0.1、0.1、0.05、0.2mg/L;与ASI复配使用时ASI的最佳投加量分别为0.5、1.5、1.0、1.0mg/L。另外,自然水体中有机物的降解会产生腐殖酸,从而污染水质。分别使用聚丙烯酰胺(PAM)、PAC以及两者复配,通过检测混凝后的UV254以及絮体粒径指标,得出PAM、PAC单独使用时的最佳投加量分别为8、100mg/L,PAM与PAC复配时PAM的最佳投加量为0.8mg/L,证明复配可在低投加量下有效增强混凝效果。  相似文献   

9.
针对某煤矿富含高岭土的矿井水难以处理的问题,对絮凝剂PAM和PAC的选用及最佳投量进行了试验。结果表明:阳离子PAM的絮凝效果显著优于阴离子、非离子PAM的;原采用的普通型PAC配合PAM不能有效去除高岭土颗粒,而高效液体型PAC在投加量仅为普通型PAC的1/3的条件下,处理出水浊度可降至4.2~8.4 NTU。因此,实际工程确定选用阳离子PAM和高效液体型PAC药剂,投加量分别为0.25、50 mg/L,处理效果得到了显著提高,但反渗透进水SDI值仍常有超过3的情况出现。为此,在一级过滤泵前增加二次絮凝工艺(投加3~5 mg/L的PAC),保证反渗透进水SDI值稳定在3以下,达到了设计要求。  相似文献   

10.
根据水厂出厂水浊度和翻板滤池出水浊度内控指标的区间要求,建立回归分析方程,做出拟合直线,通过回溯法确定了高效澄清池出水浊度区间,并探索出PAC、PAM投加量及污泥回流比的优化区间。生产性试验表明,根据滤后水浊度内控指标为0.5~0.9 NTU,反馈控制高效澄清池出水浊度区间为1.8~3.1 NTU,探索出PAC投加量为14~22 mg/L、PAM投加量为0.08~0.16 mg/L、污泥回流比为2%~6%的最优药剂组合,从而指导水厂科学生产,达到了优质供水、节能降耗的目的。  相似文献   

11.
混凝絮体破碎再絮凝及污泥回流除浊试验研究   总被引:1,自引:0,他引:1  
以硫酸铝为混凝剂、聚丙烯酰胺(PAM)为助凝剂,考察了不同混凝剂投量下絮体破碎再絮凝的出水浊度变化以及污泥回流量对除浊效果的影响。结果表明:当混凝剂投量为5、7.5mg/L时,可使再絮凝浊度低于初始絮凝浊度,在此混凝剂投量下,回流一定量的污泥可进一步优化再絮凝效果,而PAM的加入会产生一定的胶体保护作用;当混凝剂投量10 mg/L时,再絮凝浊度高于初始絮凝浊度,在此情况下回流污泥会使再絮凝浊度进一步升高,投加PAM可在一定条件下逆转这种恶化倾向。  相似文献   

12.
王福进 《供水技术》2008,2(3):29-30
针对黄河水的低温低浊水质特点,按照水厂实际工艺设计了中试设备.应用基本涡旋理论的栅条混合、强化絮凝网格反应和低脉动斜板沉淀技术对设备作了改进.通过中试优选了混凝剂和助凝剂,并确定了其最佳投药量和投加点.当水厂PAC稀释液投加量为5.77 mg/L,PAM投加量为0.5 mg/L时,沉后水浊度小于0.5 NTU.  相似文献   

13.
赵朋飞  岳秀萍  蔡强 《山西建筑》2011,37(13):121-123
分析了聚合氯化铝(PAC)的化学混凝除磷效果及PAM的助凝效果,并进行了试验研究,PAC烧杯实验结果表明:总磷浓度为1.39 mg/L时,单独投加60 mg/L的PAC即可使出水TP〈0.5 mg/L;生产性试验表明:生物处理单元稳定运行的情况下,PAC投加量在65 mg/L~70 mg/L时可使出水TP〈0.5 mg/L,达到城镇污水处理厂污染物排放标准(GB 18918-2002)中一级A排放标准。  相似文献   

14.
以模拟铁超标的水源水作为研究对象,在水厂常规工艺的基础上增加预臭氧工艺,考察了该组合工艺对含铁原水的处理效果。结果表明,常规工艺对铁的去除效果有限;臭氧—沉淀工艺可以有效去除原水中总铁,原水中总铁含量为7.5~8.0 mg/L时,臭氧投加量提高至5 mg/L即可保证出水铁含量达标,但对浊度去除效果差。结合经济性原则,当原水总铁含量为5~8 mg/L时,最佳工艺参数如下:O_3投加量为4 mg/L,PAC投加量为20 mg/L;当原水中总铁含量为8~10mg/L时,最佳工艺参数如下:O_3投加量为5 mg/L,PAC投加量为20 mg/L。  相似文献   

15.
刘伟  程方  刘振耒  李晓殷 《供水技术》2012,6(6):20-22,26
采用聚合氯化铝铁(PAFC)对低温低浊海水进行混凝烧杯试验。结果表明,在海水水温低于10℃、浊度低于50 NTU时,PAFC的最佳投药量为15 mg/L,此条件下浊度、CODMn及UV254的去除率分别达到91.57%,54.47%和32.56%。通过试验比较了PAFC和聚合氯化铝(PAC)对低温低浊海水的混凝效果,得出PAFC的混凝效果优于PAC。  相似文献   

16.
5.12地震后,绵阳市地表水源水质发生较大变化,浊度逐年呈现上升趋势。2010年,绵阳市某给水厂原水最高浊度达到20170NTU。针对高浊度原水,该给水厂选用聚丙烯酰胺(PAM)与聚合氯化铝(PAC)进行联合投加。在高浊度原水期间,PAM投加量控制在0.1mg/l左右,PAC最高投加量为77.32mg/l。通过对水厂工艺运行参数的适当调整,在高浊度原水情况下取得了较好的处理效果,保证了出厂水水质。  相似文献   

17.
以西安第四自来水厂滤池反冲洗废水为对象,进行了造粒流化床处理含铁锰反冲洗废水的生产性试验研究。该工艺优化的运行参数如下:上升流速为30 cm/min,搅拌转速为2 r/min,PAC投加量为5~7 mg/L,PAM投加量为0.7~1 mg/L,间歇排泥间隔为42 h。在上述运行条件下,当进水浊度为65~100 NTU时出水浊度小于1 NTU,铁、锰含量分别低于0.3 mg/L和0.2mg/L,出泥含水率约为93.7%,污泥浓度约为72 g/L,处理成本约为0.16元/m~3。且当进水浊度在10~600 NTU或上升流速在15~45 cm/min变化时,出水浊度仍可保持在3 NTU以下。实际工程运行效果表明,造粒流化床处理该废水具有出水水质好、抗冲击负荷能力强、污泥浓缩效果好、处理成本低的优点。  相似文献   

18.
PAC和PAM复合混凝剂处理垃圾渗滤液的研究   总被引:4,自引:1,他引:3  
通过投加混凝剂聚合氯化铝(PAC)和助凝剂聚丙烯酰胺(PAM)对垃圾渗滤液进行混凝沉淀处理,根据单因素和正交试验确定其最佳工艺条件.结果表明,混凝的最佳条件:PAC投加量为750 mg/L、PAM投加量为15 mg/L、快速(150 r/min)搅拌1 min、中速(45 r/min)搅拌6min、慢速(35 r/min)搅拌7 min、在快速混合之后投加助凝剂.在该处理条件下,系统对垃圾渗滤液中COD和浊度的去除率达到最大,分别为27.45%和65.80%.  相似文献   

19.
采用在活性炭滤池前端投加不同药剂的方法深度净化某水厂沉淀池出水,考察了不同滤池形式、聚合氯化铝(PAC)投加量和阳离子型聚丙烯酰胺(PAM)投加量对沉后水浊度的去除效果。结果表明,在下向流滤池前端投加0.3 mg/L的PAC和0.03 mg/L的PAM可以明显强化活性炭滤池的过滤效果,使出水浊度小于0.1 NTU;与砂滤池出水相比,活性炭滤池对浊度的去除率提高了16.6%,CODMn去除率提高了56%;相应的滤池水头损失增加较快,但仍可以满足运行周期不小于24 h的设计要求;滤后水中铝和溴酸盐含量均满足《生活饮用水卫生标准》(GB 5749—2006)要求。  相似文献   

20.
针对珠海市某水库水水质污染特征,采用聚硅酸铝铁(PSAF)作为混凝剂,通过小试试验和中试试验对其混凝效果进行研究。结果表明,PSAF对此水库水具有良好混凝沉淀效果,形成的絮体密实、沉降速度快、产生污泥体积小。对浊度的去除效果优于聚合氯化铝铁(PAFC),且远远优于聚合硫酸铁(PFS)、聚合氯化铝(PAC)。中试试验装置中,PSAF的最佳投加量为7mg/L,在此投加量下,滤前浊度去除率达到70.8%,滤后出水对浊度去除率达到94.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号