首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
许威  曹军  花军  陈光伟 《包装工程》2024,45(3):284-291
目的 以水曲柳为研究对象,研究高应变率压缩载荷作用下水曲柳试件的解离特征和能量耗散机制。方法 利用压缩加载试验分析应变率、加载方向对受载水曲柳的形态特征影响和动力学特性,并利用弹塑性基本原理分析其受压解离的能量耗散机制。结果 解离后径向加载试件主要呈火柴棍状,弦向加载试件主要呈片状,轴向加载试件主要呈不规则块状,试件的解离程度随应变率的增大而增大;当应变率在400~1 000 s−1时,水曲柳试件的应力-应变曲线由弹性阶段和屈服后弱线性强化阶段两部分组成;水曲柳试件的屈服强度随应变率的增大而增大,当应变率从400 s1增加到1 000 s1时,径向、弦向和轴向加载试件的屈服强度分别增加了0.45倍、1.34倍和0.71倍;木材原料沿径、弦向解离时主要依靠木材细胞的压缩变形来耗散能量,沿轴向解离时主要依靠木材细胞纵向结构的弯曲来耗散能量。结论 弦向最易解离,轴向最难解离;水曲柳是一种应变率敏感材料;木材原料径、弦向解离主要依靠压缩变形来耗散能量,轴向解离主要依靠弯曲变形来耗散能量,木材原料解离能够耗散能量的多少主要受加载方向、木材细胞的结构尺寸和力学性能的影响。  相似文献   

2.
《中国测试》2016,(10):79-84
基于云杉微观结构特征,建立代表体积元模型,对顺纹和横纹压缩下云杉大变形行为进行数值模拟,获得材料各向异性和宽平台应力特性。数值模拟涉及准静态、5,50,500 m/s 4种加载速率,结果表明剪切滑移和屈曲塌陷是木材顺纹压缩的主要失效模式;横纹压缩则体现为胞墙褶皱和循序塌陷。加载速率对顺纹压缩影响高于横纹方向加载,高速加载时木材在轴向压缩下呈现花瓣形破坏,而横纹压缩则表现为压缩膨胀断裂;相对于高速加载,低速加载下木材变形表现为更均匀、平稳。  相似文献   

3.
许威 《包装工程》2019,40(11):86-93
目的 以杨木为研究对象,研究其静动态压缩载荷作用下应力-应变曲线的变化特征,建立适合的本构模型,并对其进行描述。方法 对杨木试件进行静动态压缩加载试验,分析静动态压缩载荷作用下杨木应力-应变曲线的变化特征,构建适用于静动态压缩载荷作用下杨木的本构模型。结果 静态压缩加载杨木的应力-应变曲线分为线弹性阶段、屈服阶段和密实化阶段等3个部分,动态压缩加载杨木的应力-应变曲线分为线弹性阶段和屈服阶段等2个部分;静态压缩加载时,杨木轴向屈服应力最大,分别是径向和弦向的5.70倍和7.75倍;动态压缩加载时,当应变率从400 s-1增加到1000 s-1时,径向、弦向和轴向的屈服应力分别增加了1.51,1.59,3.12倍,杨木的屈服应力具有应变率敏感性;采用包含应变率影响的本构方程来描述杨木在静动态压缩载荷作用下的本构关系是比较合适的。结论 杨木是一种应变率敏感材料,静动态压缩载荷作用下杨木的应力-应变曲线均表现出多孔材料的特征,将多孔材料本构模型应用于木材是可行的。  相似文献   

4.
在混凝土静态破坏尺寸效应方面开展的研究已经较为完善,而在动态破坏尺寸效应方面的研究还远没有形成一个统一的认知。混凝土尺寸效应根源于内部组成的非均质性,从细观角度出发,考虑材料非均质及细观组分的应变率效应,将混凝土看作由骨料、砂浆及界面过渡区组成的三相复合材料,建立了混凝土动态破坏行为研究的细观数值分析方法,对不同应变率(1×10-5 s-1~2×102 s-1)及不同尺寸方形混凝土试件单轴压缩破坏行为进行模拟与分析。数值结果表明:混凝土动态与静态加载下压缩强度尺寸效应规律存在明显差异,在动态压缩强度尺寸效应规律中,存在一个临界应变率(约为1 s-1),即:低于临界应变率时,应变率增大时,压缩强度随试件尺寸增大而减小,且尺寸效应逐渐被削弱;达到临界应变率时,混凝土动态压缩强度与尺寸无关,尺寸效应被完全抑制;高于临界应变率时,应变率增大时,压缩强度随试件尺寸增大而增大,尺寸效应逐渐增强。最后对混凝土动态强度尺寸效应的产生机理进行了分析与讨论。  相似文献   

5.
利用分离式霍普金森杆(SHPB)对三种合金钢A、B、C的动态压缩性能(应变率500 s-1~7 500 s-1)进行研究。结果表明:三种材料中A的压缩屈服强度最高,其次为C,B的强度最低;材料A、B在应变率500 s-1~6 000 s-1范围内均没有表现出明显的应变率效应,在应变率7 500 s-1下表现出较弱的应变率效应;这两种材料的压缩曲线形态相似,均表现出一定的应变硬化。C材料在整个应变率范围内均未表现出应变率效应,表现出一定的应变硬化。  相似文献   

6.
硬松类木材横纹压缩时能量吸收特性研究   总被引:5,自引:4,他引:1  
徐朝阳  徐德良  贾翀  周兆兵 《包装工程》2014,35(17):11-14,38
目的研究木材能量吸收特性。方法采用横纹压缩试验。结果径向横压应力-应变曲线呈现线弹性区、平台区和密实化区等3个阶段,径向横压比例极限大于弦向。当绝对含水率为13.1%、径向横压应变为0.55时,能量吸收值和缓冲系数分别为3.919 MJ·m3和2.847。当绝对含水率为13.1%、弦向横压应变为0.11时,吸收能量值和缓冲系数仅为0.472 MJ·m3和12.746,且木材已压溃失效。随着绝对含水率的下降,横纹压缩强度、吸能能力和径向横压最大吸能效率均呈上升趋势,最大横纹压缩强度、能量吸收值和径向吸能效率分别为10.15 MPa,4.430 MJ·m3和0.362%,而弦向横压时吸能效率呈下降趋势。结论木材绝对含水率和纹理方向对木材能量吸收有一定影响。  相似文献   

7.
利用分离式霍普金森压杆(SHPB)装置对三维四向编织碳纤维增强树脂基复合材料的动态压缩性能进行了研究。通过对编织角为20°、30°和45°的试验件分别进行沿纵向、横向和厚度方向的动态压缩试验,得到材料在800~2 000/s应变率范围内的应力-应变曲线,并与准静态压缩试验结果进行对比,研究了应变率、压缩方向及编织角对材料极限强度和弹性模量的影响。结合高速摄影记录的动态压缩过程,进一步分析了不同情况下材料的破坏模式与破坏过程。结果表明:应变率越高,材料的极限强度和弹性模量越大,材料在受压的三个方向上均具有一定的应变率强化效应,且高应变率下表现出比准静态压缩时更明显的脆性;编织角的改变对材料在三个方向上的动态压缩性能均有影响,其中对纵向的影响最为明显;不同方向受压时材料的失效形式不同,且准静态和高应变率下的失效形式也有区别。  相似文献   

8.
梁浩  张方举  谭云 《材料导报》2012,(Z1):389-391,404
在不同应变率压缩与拉伸下,研究了Mg-3Al-2Zn-2Y合金的力学性能,发现2种条件下合金力学性能变化规律不同。压缩情况下,随应变率增大,极限强度与屈服强度先增大后减小,高应变率下(1300~4800s-1)的流变应力大于中低应变率(0.001~1s-1);在0.001~1450s-1拉伸下,随应变率增大,合金的流变应力呈增大趋势,极限强度、屈服强度增大,破坏应变先减小后增大。压缩情况下合金流变应力的应变率敏感性高于拉伸情况。  相似文献   

9.
在不同应变率压缩与拉伸下,研究了Mg-3Al-6Zn-2Y合金的力学性能,发现两种条件下合金力学性能变化规律不同。压缩情况下,随应变率增大,合金的流变应力增大,极限强度、屈服强度、破坏应变先增大后减小,塑性先增大后减小;拉伸情况下,随应变率增大,合金的流变应力、极限强度、屈服强度先增大后减小,破坏应变减小,塑性减小。压缩情况下合金流变应力的应变率敏感性高于拉伸情况。  相似文献   

10.
分别研究了聚苯乙烯泡沫(Expanded polystyrene,简称EPS)在三种不同密度和三种不同加载速率下的无侧限单轴准静态压缩力学行为.结果表明:EPS的压缩与一般多孔材料的压缩特征相似,其应力-应变曲线也分为三阶段(弹性段、塑性屈服平台段及致密段).并验证了聚苯乙烯泡沫(EPS)在线弹性阶段的弹性模量与其密度近似符合二次函数关系;通过对实验结果的拟合得出了EPS的密度与其屈服强度呈线性关系并给出了关系表达式.同时表明:同一密度的EPS在不同加载速率下其线弹性模量基本不变而屈服强度随加载速率的增加而显著增加,其应变率敏感度m值较大且变化显著,EPS表现出明显的应变率效应.  相似文献   

11.
Rate effects on the compression and recovery of dimensions of cork   总被引:2,自引:0,他引:2  
A study of the effect of strain rate on the compression behaviour of cork was carried out, which takes into account the anisotropy of the material. Compression curves at three different rates were obtained for each of the three directions in cork (radial, axial and tangential). Strain-rate sensitivity coefficients,m, were also measured in experiments where the strain rate was suddenly changed during the tests. The values ofm are fairly isotropic, around 0.06. For a given strain rate, the radial direction is stronger (i.e. larger stresses) than the other two, but these are not equivalent, the axial direction being slightly stronger for most of the strain interval between 0 and 80%. The recovery of dimensions following compression in each direction was also studied. The change in the three dimensions with time was monitored, following compression to 30% and to 80% strain in a given direction. In the first case, recovery is almost total after 20 days, but for 80% compression the deformation is not completely recovered after unloading. The recovery rate decreases appreciably with time and increases with the degree of deformation previously imposed. An equation is proposed that describes the recovery behaviour with a reasonable accuracy.  相似文献   

12.

We use the particle flow code PFC3D to simulate the triaxial compression of sandstone under various radial stresses and loading strain rates to determine the triaxial stress-strain curves, crack propagation path, and contact forces to investigate the failure process of sandstone. We analyze the energy and damage evolution during triaxial compression. The results indicate that the tension and shear-induced cracks increase with the increase of radial stress under the same loading strain rate. Both normal and tangential contact forces exhibit strong anisotropy and increase with radial stress and strain rate. The normal contact force has an approximately symmetrical distribution with respect to the horizontal plane, whereas the tangential contact force has an approximately symmetrical distribution with respect to the axis. For the characteristics of the energy evolution, the boundary energy density, strain energy density, and dissipated energy density all increase linearly with the radial stress, and the boundary energy density increases at the fastest rate, followed by the strain energy density and dissipated energy density. In the post-peak stage the primary energy consumption is the dissipated energy. After that, in the remaining stage the strain energy decreases gradually. By analyzing the evolution of the damage variables in the prepeak area we observed that the damage variable followed an exponential relationship with the axial strain. When the loading strain rate is constant, the damage variable corresponding to the same strain value decreases with increase of radial stress. The results indicate that the increase in radial stress delays the damage acceleration. In contrast, the effect of the loading strain rate on the damage variable is small. The findings reveal the internal structural evolution of rocks during deformation and failure.

  相似文献   

13.
The compressive behaviour of spruce wood under uniaxial loading is studied at different orientations with regard to the longitudinal and radial direction. The dependence of the Young modulus, Poisson ratio and crushing strength on the loading angle with respect to the longitudinal direction is shown and described by a simple theory of orthotropic elasticity and a Tsai–Hill like strength criterion. The deformation and failure behaviour was also strongly influenced by the loading orientation. The different deformation and failure mechanisms found ranged from buckling of the elongated cells at loading in the longitudinal direction followed by final failure due to longitudinal cracks to shear deformation and failure at annual ring borders at loading angles of 20° and 45° due to the abrupt density change at the ring border and to the plastic yielding and collapsing followed by densification for loading in the radial direction.  相似文献   

14.
Plasticity of steamed Spruce wood, compressed in uniaxial strain, is addressed in terms of a classical linear viscoplasticity model. The dynamic stiffness modulus increases along with compressive stress in the radial material direction, but decreases as a function of stress in the longitudinal direction. The longitudinal viscoplastic retardation time is an order of magnitude smaller than the radial retardation time, the plastic strain rate at invariant normalized overstress thus being much higher in the longitudinal direction. In the longitudinal direction, the retardation time increases along with increased compressive stress. The viscoplastic retardation time is inversely proportional to the straining rate in both material directions. Consequently, within any particular schedule of normalized overstress, the accumulation of plastic strain along with the number of loading cycles is independent of straining rate.  相似文献   

15.
中等应变率下泡沫铝的吸能特性   总被引:3,自引:0,他引:3  
进行了不同密度、高度和压缩方向下泡沫铝的准静态压缩试验和中等应变率下(<100 s-1)的冲击试验,研究了具有不同密度的闭孔泡沫铝在准静态压缩和冲击工况下的吸能特性.结果表明,泡沫铝是一种近似的各向同性结构,具有较高的单位质量吸能特性,是一种较好的吸能材料.在准静态和中等应变率冲击条件下,泡沫铝对应变率不敏感,其应力应变关系与应变率关系不大.不同的泡沫铝,其平台应力与密度之间的关系不同,在研究其性能时,必须测量应力-应变关系.泡沫铝的致密区对其吸能特性有很大的影响.  相似文献   

16.
Cyclical compression was applied to steamed Spruce wood in uniaxial strain under stress control. Molecular fatigue response was investigated in terms of thermoporosimetry. In accordance with classical Coffin–Manson theory, it was found that the creation of fatigue damage depends on plastic strain amplitude, not depending on the applied stress, applied strain, or the amount of dissipated energy as such. At a specified strain amplitude, molecular fatigue does not appear to be sensitive to loading frequency. However, it does appear to be related to decrement of dynamic stiffness in the course of dynamic loading. Molecular reorganization becomes more pronounced along with further energy application. Results for specimens loaded in the tangential material direction are rather consistent, whereas the molecular reaction varies widely along with the local strain amplitude in the case of specimens loaded in the radial material direction. This implies that the molecular fatigue process is essentially strain-controlled, rather than stress-controlled.  相似文献   

17.
对比分析DP980高强钢在应变速率10~(-3)~10~3s~(-1)范围内的动态拉伸实验结果,研究其力学行为以及断裂模式特点。结果表明:应变速率从准静态(10~(-3)s~(-1))增加至10~0s~(-1)过程中,强度基本保持不变,塑性下降了7.5%;应变速率从100s~(-1)增加至103s~(-1)过程中,强度不断增大,而塑性在10~0~10~2s~(-1)范围内上升14%,随后在10~2~103s~(-1)范围内下降了24.7%;应变速率敏感系数m始终随应变速率的增加而升高。变形过程中,位错增殖强化和加速阻力是强度上升的主要原因。塑性变形集中在铁素体中,微孔裂纹主要沿马氏体/铁素体交界扩展。试样沿厚度方向上的宏观断口,在应变速率小于101s~(-1)时呈"V"形杯锥状,在应变速率高于10~1s~(-1)时则是与拉伸方向成约45°的纯剪切型。  相似文献   

18.
In this work, a commercial magnesium alloy, AZ31B in hot-rolled condition, has been subjected to severe plastic deformation via four passes of equal channel angular pressing (ECAP) to modify its microstructure. Electron backscatter diffraction (EBSD) was used to characterize the microstructure of the as-received, ECAPed and mechanically loaded specimens. Mechanical properties of the specimens were evaluated under both compression and tension along the rolling/extrusion direction over a wide range of strain rates. The yield strength, ultimate strength and failure strain/elongation under compression and tension were compared in detail to sort out the effects of factors in terms of microstructure and loading conditions. The results show that both the as-received alloy and ECAPed alloy are nearly insensitive to strain rate under compression, and the stress–strain curves exhibit clear sigmoidal shape, pointing to dominance of mechanical twinning responsible for the plastic deformation under compression. All compressive samples fail prematurely via adiabatic shear banding followed by cracking. Significant grain size refinement is identified in the vicinity of the shear crack. Under tension, the yield strength is much higher, with strong rate dependence and much improved tensile ductility in the ECAPed specimens. Tensile ductility is even much larger than the malleability under compression. This supports the operation of 〈c + a〉 dislocations. However, ECAP lowers the yield and flow strengths of the alloy under tension. We attempted to employ a mechanistic model to provide an explanation for the experimental results of plastic deformation and failure, which is in accordance with the physical processes under tension and compression.  相似文献   

19.
Abstract— The use of kinematic hardening models are examined for tubes subjected to (a) cyclic plastic torsion with a sustained axial stress and (b) cyclic plastic tension-compression with a sustained hoop stress. It is shown that the kinematic model predicts a limit to the plastic strain accumulation resulting from the sustained loads. Experimental results show that the strain accumulation is not limited and that the mode of deformation within a cycle of plastic strain cannot be predicted using a kinematic hardening model. The development of the yield surface under cyclic loading is examined. The results indicate that contraction and expansion of the yield surface along the stress axes can occur and it is shown that the direction of the sustained stresses, relative to the direction of the cyclic stresses is an important factor in the development of any cumulative plastic strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号