首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
桥梁主梁结构涡激振动具有三维特性,主梁涡激力沿展向并不完全同步。在均匀流场条件下针对宽高比为5的矩形断面主梁分别进行了振动状态和静止状态风洞试验,对其气动力、尾流风速、表面压力展向相关性等进行研究。结果表明:振动状态矩形断面主梁气动力展向相关系数比静止状态大,涡振锁定区内升力系数相关系数最大值位于锁定区间上升段而非振幅最大处。振动状态矩形断面主梁尾流区顺风向及竖向脉动风速展向相关系数小于其气动力展向相关系数;静止状态矩形断面主梁尾流区顺风向脉动风速和竖向脉动风速展向相关系数沿展向距离呈指数衰减,且不同风速下对应的衰减曲线比较接近。  相似文献   

2.
风洞试验是涡激振动研究最为重要的手段之一。由于风洞尺寸的限制,涡激共振试验中存在一定的阻塞效应,然而已有关于涡激振动阻塞比效应的研究较为少见。数值风洞模拟方法可以自定义尺寸大小,从而避免实际风洞尺寸的限制。该文采用数值风洞方法,针对大跨度桥梁扁平箱梁,在阻塞比为1%、2.5%、3.89%、5%和8.75%下进行了竖向涡激共振分析,主要研究阻塞效应对扁平箱梁的气动力、涡激力及其分量、涡振振幅和流场等的影响。结果表明:随着阻塞比的增大,扁平箱梁的静力三分力系数、涡激升力、涡振振幅和受箱梁影响的流场范围均增大;涡激升力各分量的变化趋势各不相同,其中做正功的线性气动阻尼力先略减小后增大,做负功的非线性气动阻尼力持续减小;在2.5%阻塞比以内,上述各项的变化幅度几乎都在5%以内。最后,基于数值结果,该文给出了扁平箱梁涡振振幅的阻塞效应修正系数。  相似文献   

3.
涡激力展向相关性是准确预测三维柔性结构涡激振动振幅的重要因素。以宽高比5∶1矩形断面为例,通过气动力展向相关函数理论建模和节段模型弹性悬挂测振、测压风洞试验,研究了涡激振动锁定区间内实测气动力展向相关性变化规律。研究结果表明:在涡激振动锁定区间内,实测气动力由完全相关的自激力和不完全相关的随机气动力组成,展向相关性可以用指数加常数型函数描述,指数项系数为随机气动力占实测气动力的能量比,指数项系数和常数之和等于1;实测气动升力均方根在涡振起振阶段最大,随着风速增大反而减小,随机气动力均方根基本保持不变,由此导致实测气动力展向相关性表现为起振阶段最强,随着风速增加而减弱。  相似文献   

4.
中央开槽箱梁因其优越的颤振性能而在大跨度桥梁建设中得到应用,但中央开槽存在引发结构大幅涡振的气动稳定性问题。以典型大跨度桥梁中央开槽箱梁断面为对象,进行弹簧悬挂节段模型风洞测压、测振试验。对比研究了扭转涡振锁定风速全过程起振点、上升区中点、振幅极值点、下降区中点及涡振结束点等涡振发展过程箱梁表面气动力演化特性。研究表明,箱梁表面气动力在涡振过程不同阶段具有明显的变迁历程,气动力特性与涡振响应有明显的同步演化关系。分布气动力对涡激力的贡献与扭转涡振振幅呈正相关关系,均在振幅极值点风速达到最大,下游箱梁上下表面后部区域及上游箱梁上表面前部区域对涡激力贡献较大,前两者起增强作用,后者起抑制作用,这些区域的气动力是引起中央开槽箱梁扭转涡振的主要原因。与闭口箱梁上下表面下游分布气动力对整体涡激力贡献相互抵消效应相比,中央开槽使得下游箱梁上下表面分布气动力均对整体涡激力起增强作用,这是中央开槽箱梁相比闭口箱梁涡振效应更加突出的重要原因。  相似文献   

5.
探究涡振机理是桥梁涡激振动效应评价与控制的重要前提。立足于涡振发展完整过程中多尺度气动力(宏观整体涡激力与局部分布压力)与结构效应同步演变特性分析,从涡激气动力及其对结构行为作用机制角度揭示涡振机理。以典型大跨度桥梁流线型闭口箱梁断面为研究对象,实现了弹性悬挂节段模型同步测力、测振和测压风洞试验,精确获取了整体涡激力时频演变特征。对涡振过程风速关键结点模型表面气动力进行分析,可知箱梁整体涡激力特性在涡振发生前、锁定区上升区、振幅极值点、下降区以及涡振后等不同时期具有明显的变迁历程:上表面下游、下表面下游与下游风嘴转角区域分布气动力对涡激力的贡献、整体涡激力幅值等均与涡振振幅呈正相关关系,与涡振振幅同时达到最大。在锁定区内,涡激力高次谐波成分显著变化。在振幅极值点时,二次谐波成分与基波的比例最小。总之,涡振过程气动力特性与涡振响应同步演化,尤其是上表面下游、下表面与下游风嘴转角附近区域气动力演变特性显著,前者对整体涡激力起主要增强作用,而后者对整体涡激力起主要抑制作用,这些区域气动力是引起涡振的主要原因。  相似文献   

6.
涡激振动是大跨度流线型箱梁桥在低风速下常见的风致振动形式,对桥梁结构的疲劳寿命和行车舒适性有较大影响。为揭示流线型箱梁涡激振动机理,有必要研究其涡激振动的气动力演化规律。以某流线型箱梁桥为对象,通过同步测振测压的风洞试验方法,获得了+5°风攻角下主梁模型的涡激振动响应及表面测点风压时程,对比分析了涡激振动前、涡激振动振幅上升区、涡激振动振幅极值点、涡激振动振幅下降区和涡激振动后五个不同阶段模型表面的平均风压系数、脉动风压系数和涡激力的变化规律。结果表明:在涡激振动的不同阶段,流线型箱梁表面平均风压系数变化不大,而脉动风压系数分布具有明显的演化过程。涡激力在涡激振动振幅上升区、涡激振动振幅极值点及涡激振动振幅下降区有明显的卓越频率,且与结构自振频率相近,涡激振动前和涡激振动后无明显卓越频率。涡激力卓越频率对应的振幅与涡激振动位移振幅正相关,两者同在涡激振动振幅极值点处达到最大。  相似文献   

7.
为研究大跨度桥梁常用扁平箱梁带防撞栏杆时的高阶模态涡激振动(VIV)特性,基于雷诺时均Navier-Stokes(RANS)方程、SST k-ω湍流模型和动网格技术求解扁平箱梁的绕流场并获得气动力,将Newmark-β算法代码嵌入到用户自定义函数(UDF)求解该气动力作用下的桥梁动力响应,开展了大带东桥主桥加劲梁断面高阶模态涡激振动响应的预测,模拟雷诺数为3.18×10~4~6.10×10~4。获得了扁平箱梁断面随折减风速变化的高阶涡振响应振幅根方差(RMS)曲线和加速度时程,预测了与文献较一致的高阶模态涡激振动锁定区间。研究了阻尼比和来流风攻角对扁平箱梁高阶模态涡振响应幅值和加速度的影响,表明随着阻尼比的增大高阶模态涡激振动响应逐渐变小甚至消失,而来流风攻角只有大于2°时才会发生显著的高阶模态涡激振动。  相似文献   

8.
通过风洞试验研究了大跨度矩形钢拱肋气弹模型在均匀流场和紊流场中3种攻角(-3°、0°、+3°)、多种偏角(0°~90°)条件下的涡振响应.研究结果表明:均匀流场中,发现了稳定的一阶反对称竖弯和对称竖弯涡振,紊流场中未发现明显稳定的涡振;均匀流场中,一阶反对称竖弯涡振振幅很小,风速较低,锁定区也很窄;一阶对称竖弯涡振振幅很大,风速较高,锁定区也很宽;1/4断面涡振振幅大于拱顶断面涡振振幅;可以认为当偏角大于10°时,矩形拱肋不会出现涡振.  相似文献   

9.
许坤  葛耀君 《工程力学》2017,34(2):137-144
该文基于一种用于涡振模拟的两自由度经验模型(尾流振子模型)推导了桥梁节段至实桥涡振振幅转换关系。首先介绍了尾流振子模型的形式及其特点,其次从展向全相关及展向不完全相关两方面推导了节段至实桥涡振振幅转换关系,最后结合实际桥梁对上述过程进行了算例验证,并与现场实测结果进行了比较。研究表明:当不考虑涡激力展向相关性影响时,节段至实桥涡振振幅只与结构振型函数有关,尾流振子模型得到的转换关系与传统经验非线性模型得到的转换关系相同;当考虑涡激力展向相关性时,计算得到的实桥涡振振幅可能小于节段模型结果,涡激力展向全相关条件下得到的计算结果与现场实测结果更接近。因此,当缺少精确的涡激力展向相干函数时,假定涡激力展向全相关计算得到的实桥涡振振幅可能更为可靠。  相似文献   

10.
为研究外置纵向排水管对扁平箱梁涡振性能的影响,以某大跨度扁平钢箱梁悬索桥为工程背景,采用1∶50节段模型风洞试验,分别对有无外置纵向排水管的扁平箱梁涡振性能进行研究。试验结果表明:原设计扁平箱梁在0°与±3°风攻角下均发生显著涡激振动,通过在检修车轨道处设置内侧导流以及将外侧防撞栏杆隔二封一可以有效抑制断面涡振振幅至规范限值以下,但沿桥纵向设置外置排水管会显著降低主梁涡振性能,并使原有效涡振制振措施失效。通过计算流体动力学对主梁断面二维流场的模拟结果表明,外置纵向排水管会同时改变扁平箱梁断面下表面迎风侧与背风侧斜腹板处的旋涡脱落形态,在此基础上,通过在外置纵向排水管处增设导流板与水平稳定板用以改善该处的气体绕流形态,并据此提出了一种水平稳定板、导流板与间隔封闭栏杆共同作用的组合气动措施。试验结果表明,该组合措施能够显著抑制主梁的涡激振动,同时数值模拟结果表明,能够显著减弱斜腹板处的旋涡脱落现象,从而降低主梁受到的周期性涡激力,是该组合气动措施能够抑制梁体涡激振动的主要原因。  相似文献   

11.
首先通过节段模型风洞试验测试了并列双幅钝体箱梁在10个不同间距(双幅箱梁的净间距D与单幅箱梁宽B之比D/B的变化范围为0.2~4.0)时的涡激共振振幅与风速锁定区间,并与单幅钝体箱梁的的涡激共振振幅与风速锁定区间进行了对比,研究了对并列双幅钝体箱梁的间距对涡激共振特性的影响。然后基于CFD数值计算结果,从流场的角度对涡激共振特性的影响机理进行了分析。研究结果表明:下游箱梁对上游箱梁涡激共振的影响在0.2≤D/B≤2.0时表现为一定的放大效应,在D/B≥2.5时基本可以忽略;上游箱梁对下游箱梁涡激共振的影响表现为明显的放大效应,这种放大效应在D/B=0.8时最显著,即使当D/B=4.0时仍不可忽略。  相似文献   

12.
采用范德波尔振子类涡激气动力模型,通过能量平衡原理,推导了涡激共振过程中结构的振幅增量、初始气动阻尼、非线性气动阻尼三者之间的基本关系,进而得出模型中气动力参数ε与振幅yT之间关系的识别原理。基于某扁平箱梁桥梁断面的节段模型涡振试验结果,对范德波尔类涡激气动力模型参数随振幅的演变关系进行了识别。结果表明,在涡激共振锁定区间内,随着振幅的增加,参数ε呈单调下降的趋势。与之相反的是,参数ε形成的非线性气动阻尼比却呈非线性增长的规律。当参数ε相关的非线性气动阻尼、初始气动阻尼、结构阻尼三者之和为零时,结构达到稳定的涡振极限环状态。研究表明:初始气动阻尼特性决定了结构能否起振而形成涡振锁定区间;识别出模型参数随振幅的变化关系后,高于试验阻尼的结构涡振响应具有可预测性。  相似文献   

13.
双圆柱尾流激振受多种因素影响,情况复杂,质量比m*(相同体积的圆柱与流体质量的比值)对双圆柱尾流激振的影响规律尚未澄清。采用数值模拟方法,在低雷诺数下(Re=100),研究了三种质量比(m*=2,10,20)对串列双圆柱尾流致涡激振动特性和尾流流场结构的影响规律,分析了下游圆柱的升力与位移的相位差,探讨了涡激升力与能量输入的内在联系。结果表明:质量比对串列圆柱尾流致涡激振动有重要影响。随着质量比的增大,横流向最大振幅减小,并发生在较小折减速度下,振动锁定区域范围变窄;质量比越小,升力与位移之间的相位差对下游圆柱振幅的影响越显著;在较小质量比时尾流出现“2S”、不规则和平行涡街模态,而在较大质量比时只有“2S”和平行涡街模态。  相似文献   

14.
涡激振动是大跨度桥梁在低风速易发的自限幅风致振动现象。针对典型流线闭口箱梁断面,分别进行了1∶70和1∶20主梁节段模型同步测振、测压风洞试验,对应以梁高为特征尺寸雷诺数范围分别为6.08×10~3~2.28×10~4和1.06×10~4~1.40×10~5,研究了雷诺数效应对箱梁涡振响应及表面气动力时频特性的影响。+3°初始攻角下,主梁断面存在明显涡振现象。与小比尺模型相比,大比尺模型竖向涡振发生风速低,振幅大,且出现了小比尺模型未观测到的扭转涡振现象。分别选取典型风速结点,进行表面气动力时频特性分析表明:不同雷诺数条件下,表面平均风压系数、压力系数根方差及分布气动力与涡激力相位差空间分布均有所不同,表现出显著的雷诺数效应;高雷诺数时,上表面下游、中上游和下表面区域气动力对涡激力贡献较大,其中上表面下游区域气动力对涡激力起增强作用,其它区域气动力对涡激力起抑制作用;低雷诺数时,上表面中上游区域气动力对涡激力几乎无贡献,上表面下游区域气动力对涡激力的贡献与高雷诺数时相近,下表面区域和迎风面斜腹板区域气动力对涡激力抑制作用远小于高雷诺数时。特别是下表面与下游风嘴转角附近区域气动力对涡激力抑制作用远大于高雷诺数时,可推断这正是低雷诺数时涡振幅值远小于高雷诺数时的主要原因。  相似文献   

15.
为了研究非对称人行道对主梁气动性能的影响,利用节段模型风洞试验,分别研究了非对称П型梁和流线型箱梁在不同来流风向下的三分力系数、涡振以及颤振特性。试验结果表明:在正攻角范围内,0°来流风向下(人行道板一侧的来流方向)两种类型主梁的三分力系数均大于180°来流风向值,且非对称人行道对П型梁三分力系数的影响比流线型箱梁显著;断面的非对称性会严重影响不同来流风向下П型梁的涡振性能,包括出现涡振的风攻角、涡振响应振幅、起振风速以及锁定区间等。从空气动力学角度分析,人行道板的存在使0°风向来流提前发生分离,再附点发生改变,涡激力减弱,进而改善了主梁在该来流风向的涡振性能。0°来流风向下两种类型非对称主梁的颤振临界风速均高于180°来流风向值。颤振导数结果显示非对称人行道板和栏杆可提供一定的扭转气动正阻尼,因此0°来流风向主梁的颤振临界风速较高。  相似文献   

16.
双吊索在大跨度悬索桥上应用广泛,在强/台风作用下,下游吊索常发生尾流激振。采用大涡模拟法,对雷诺数为1×10~4~4×10~4的串列双圆柱尾流致涡激振动进行数值模拟,研究了振动特性和流场流态随折减风速的变化规律,探讨了下游圆柱的动力响应、绕流场特性以及气动力三者之间的耦合关系,分析了尾流致涡激振动的流场干扰机理。结果表明:大涡模拟结果与风洞试验结果吻合良好,在某些折减风速范围内,下游圆柱会发生较大幅度的尾流致涡激共振;在下游圆柱的横风向振幅逐渐增大过程中,位移的瞬时相位领先于升力,在一个振动周期内升力对下游圆柱做正功,而位移与升力之间的相位差则逐渐增大;当发生涡激共振时,上游圆柱的尾流对下游圆柱有两种干扰形式:当下游圆柱偏离平衡位置时,从上游圆柱脱落的旋涡与下游圆柱的剪切层发生相互作用;而当下游圆柱在平衡位置附近时,上游圆柱的旋涡会撞击到下游圆柱迎风面。  相似文献   

17.
涡激振动是大跨度桥梁在低风速时易发的自限幅风致振动现象,设置栏杆扶手抑流板为典型涡振抑制措施。以某典型闭口箱梁断面为研究对象,进行了大尺度节段模型测振、测压风洞试验和CFD数值模拟,结合涡振响应、表面风压时频特性和流场特征,对比阐述了栏杆扶手抑流板抑振机理。原始断面在+3°初始攻角下出现明显竖向涡振现象,且振幅超过规范允许值。设置栏杆扶手抑流板后,涡振消失。原始断面涡振主要由气流分别在边防撞栏和检修轨道处诱导并在上下表面中部区域分别形成的主导涡引起,即‘双旋涡模式’引起的周期性气动力是涡振发生的内在机理。设置栏杆扶手抑流板主要是改变了断面上表面区域流场分布,气流受抑流板干扰,在其后产生连续的旋涡脱落,改变了下方气流移动路径,下方气流近乎水平通过边防撞栏区域,避免了边防撞栏横栏角部的流动分离,抑制了主导原始断面涡振的上表面主导涡,完全破坏了‘双旋涡模式’,极大降低了局部气动力与涡激力之间同步相关性及表面压力脉动;同时表面气动力脉动频率随机离散化,模型表面各区域气动力对涡激力的贡献均明显下降,无法激发整体结构涡振效应,故涡振消失。  相似文献   

18.
采用浸入边界法对横流向热浮升力作用下并列双圆柱的流致振动进行数值模拟研究。详细总结了理查森数Ri=3条件下并列双圆柱的最大振幅、时均位移、升阻力系数、频率特性和尾流模式等随间距比及折合流速的变化规律。研究发现:在横流向热浮升力作用下,并列双圆柱振幅和升、阻力系数呈现不对称特点,振动响应除出现涡激振动外,在更高折合流速下出现驰振;圆柱振动平衡位置相对其初始位置均发生与热浮升力反向的偏移,偏移量随折合流速增大而增加;在涡振阶段,并列双圆柱尾流场表现出稳定的宽窄尾流模式,两个圆柱的泄涡基本保持反相同步;在驰振阶段,尾流场表现为同相同步模式,圆柱的振动响应出现了倍频锁定现象。  相似文献   

19.
摘 要:通过风洞试验研究了台湾后龙溪桥气动稳定性;获得了混凝土梁和钢梁两种断面发生涡振的条件、涡振锁定风速范围及涡振振幅;对自然界和风洞中的风轴和体轴异同进行了区分;实测了两种断面的静气动力系数;最后进行了非线性静风荷载响应分析。研究结果表明:实桥风速达到135m/s,不会发生气动失稳;钢梁和混凝土梁断面+3°攻角时在均匀流场中会发生竖向和扭转涡振,扭转涡振风速锁定风速很高,而且范围很宽;在紊流度约为10%风场中,攻角在-3°~+3°范围内,未观测到明显涡振;由静风荷载引起的主梁附加攻角很小,风荷载非线性对主梁扭转位移和侧向位移影响很小,而对竖向位移影响相对较大,原因是竖向风荷载引起主缆刚度改变。  相似文献   

20.
当细长结构的驰振临界风速位于涡激共振风速锁定区间内或者接近时,存在涡激共振与驰振两种不同类型风振现象耦合的可能。该文对这两种振动耦合进行了理论推导并建立了相关的耦合振动预测模型;根据3个大长细比钝体构件的工程实例,通过数值模拟和风洞试验等手段获得的相关风振参数分别估算了两类振动的临界风速与锁定区间。由风洞试验测得的构件实际振动曲线与预测模型吻合良好,从而证实了一定条件下构件涡激共振和驰振存在耦合的可能,定性地说明了在两种不同振动机理下产生的气动负阻尼会相互叠加并共同抵消结构机械阻尼,使涡激共振幅值增大,驰振临界风速提前。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号