首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A realistic photon beam model based on Monte Carlo simulation of clinical linear accelerators was implemented in a convolution/superposition dose calculation algorithm. A primary and an extra-focal sources were used in this beam model to represent the direct photons from the target and the scattered photons from other head structures, respectively. The effect of the finite size of the extra-focal source was modeled by a convolution of the source fluence distribution with the collimator aperture function. Relative photon output in air (Sc) and in phantom (Scp) were computed using the convolution method with this new photon beam model. Our results showed that in a 10 MV photon beam, the Sc, Sp (phantom scatter factor), and Scp factors increased by 11%, 10%, and 22%, respectively, as the field size changed from 3 x 3 cm2 to 40 x 40 cm2. The variation of the Sc factor was contributed mostly by an increase of the extra-focal radiation with field size. The radiation backscattered into the monitor chamber inside the accelerator head affected the Sc by about 2% in the same field range. The output factors in elongated fields, asymmetric fields, and blocked fields were also investigated in this study. Our results showed that if the effect of the backscattered radiation was taken into account, output factors in these treatment fields can be predicted accurately by our convolution algorithm using the dual source photon beam model.  相似文献   

2.
The optimal field shape achieved using a multileaf collimator (MLC) often requires collimator rotation to minimize the adverse effects of the scalloped dose distribution the leaf steps produce. However, treatment machines are designed to deliver wedged fields parallel or perpendicular to the direction of the leaves. An analysis of cases from our clinic showed that for 25% of the wedged fields used to treat brain and lung tumors, the wedge direction and optimal MLC orientation differed by 20 degrees or more. The recently published omni wedge technique provides the capability of producing a wedged field with orientation independent of the orientation of the collimator. This paper presents a comparison of the three-dimensional (3D) dose distributions of the omni wedged field with distributions of wedged fields produced using both the universal and dynamic wedge techniques. All measurements were performed using film dosimetry techniques. The omni wedge generated fields closely matched the conventional wedged fields. Throughout 95% of the irradiated volume (excluding the penubra), the dose distribution of the omni wedged field ranged from +5.5 to -3.5 +/- 1.5% of that of the conventionally wedged fields. Calculation of the omni wedged field is as accurate as conventional wedged field calculation when using a 3D treatment planning systems. For two-dimensional treatment planning systems, where one must assume that the omni wedged field is identical to a conventional field, the calculated field and the delivered field differs by a small amount.  相似文献   

3.
Visual fields were determined in alert restrained birds using an ophthalmoscopic reflex technique. The region of binocular overlap is relatively small: maximum width of 20 degrees occurs approximately 15 degrees below the horizontal, and the field extends vertically through 80 degrees with the bill tip placed close to the centre. Monocular field width in the horizontal plane is 139 degrees, and the field is asymmetric about the optic axis. The cyclopean field extends through 260 degrees, and the blind area above and behind the head reaches maximum width of 100 degrees close to the horizontal. At the frontal margins of the monocular field the retinal and optical fields do not coincide; the retinal field margin lies approximately 10 degrees inside the optical margin. This gives rise to an apparent binocular field that is twice the width of the functional binocular field. Interspecific comparisons show that the binocular field of Short-toed Eagles is similar in shape and size to those of bird species that differ markedly in phylogeny, ecology, foraging technique, and eye size. This suggests that these relatively narrow binocular fields are a convergent feature of birds whose foraging is guided by visual cues irrespective of whether items are taken directly in the bill or in the feet, as in eagles, and irrespective of the size and shape of the monocular and cyclopean visual fields. It is argued that binocular vision in birds results from the requirement for each monocular field to extend contralaterally to embody a portion of the optical flow field which is radially symmetrical about the direction of travel. This is in contrast to functional explanations of binocularity, such as those concerned with stereopsis, which present it as a means of extracting higher order information through the combination of two monocular images of the same portion of a scene.  相似文献   

4.
Dose planning programs originally intended for use with symmetric fields have been adapted for use with asymmetric fields. An accurate representation of the change in primary beam quality with off-axis distance and depth is essential for accurate dose calculation and is usually represented in the computer as a primary radiation profile or primary off-center ratio (POCR). The original field edge correction (FEC) method described by Cadman [Med. Phys. 22, 457 (1995)] to determine POCRs has been extended to allow accurate POCR values to be obtained to an off-axis distance defined by the corners of the largest field, typically at an off-axis distance of 28.3 cm. This technique requires only routine symmetric field measurements including beam profiles, TMRs, and collimator and phantom scatter factors. The POCRs obtained using the FEC technique were used to generate off-center ratios (OCRs) using the boundary factor technique of Chui et al. [Med. Phys. 15, 92 (1988)]. Excellent agreement with measured values was obtained for cross-beam OCRs using a 10 x 10-cm2 field defined by a single set of asymmetric jaws with a field center offset of 15 cm and for diagonal OCRs using a 20 x 20-cm2 field with each pair of jaws in a half-blocked configuration.  相似文献   

5.
Head-scatter factors were measured for a range of field sizes of rectangular shape from a linear accelerator that provides 6 and 25 MV photon beams. For a given field length and width, exchange of the inner and outer collimator pairs produces differences in the head-scatter factor of up to about 2% and 3% in open and wedged fields, respectively. Dependence on elongation deviates by up to 2% from that given by the equivalent squares. Such effects can easily be taken into account by using head-scatter data that have been directly measured in rectangular fields or by applying empirical corrections to values for square or equivalent square fields.  相似文献   

6.
Experiments were undertaken in order to verify whether or not a strong magnetic field would have any biological effects on the cell growth, viability and radiation response of mammalian cells. Magnetic field exposures were conducted using a superconducting magnet with freshly-isolated human peripheral blood T-lymphocytes maintained at their normal growing temperature of 37 degrees C. The static magnetic fields with intensities up to 6.3-tesla (T) exerted little influence on the cell growth and viability of actively-growing T-lymphocytes under normal cell-culture conditions. On the other hand, the T cells exposed to the magnetic fields (4 T-6.3 T) during PHA stimulation were inhibited in their cell growth when compared to controls. The effects of the magnetic fields with intensities up to 2 T on cell growth properties, however, were minimal in this system. Also, the radiosensitivity of T-lymphocytes previously exposed to the strong magnetic fields was more sensitive than that of control cells. These results suggest that exposure to a static magnetic field of 4 T or stronger might lead to physiological and growth abnormalities at the cellular level.  相似文献   

7.
To account for clinical divergent and polychromatic photon beams, we have developed kernel tilting and kernel hardening correction methods for convolution dose calculation algorithms. The new correction methods were validated by Monte Carlo simulation. The accuracy and computation time of the our kernel tilting and kernel hardening correction methods were also compared to the existing approaches including terma divergence correction, dose divergence correction methods, and the effective mean kernel method with no kernel hardening correction. Treatment fields of 10 x 10-40 x 40 cm2 (field size at source to axis distance (SAD)) with source to source distances (SSDs) of 60, 80, and 100 cm, and photon energies of 6, 10, and 18 MV have been studied. Our results showed that based on the relative dose errors at a depth of 15 cm along the central axis, the terma divergence correction may be used for fields smaller than 10 x 10 cm2 with a SSD larger than 80 cm; the dose divergence correction with an additional kernel hardening correction can reduce dose error and may be more applicable than the terma divergence correction. For both these methods, the dose error increased linearly with the depth in the phantom; the 90% isodose lines at the depth of 15 cm were shifted by about 2%-5% of the field width due to significant underestimation of the penumbra dose. The kernel hardening effect was less prominent than the kernel tilting effect for clinical photon beams. The dose error by using nonhardening corrected kernel is less than 2.0% at a depth of 15 cm along the central axis, yet it increased with a smaller field size and lower photon energy. The kernel hardening correction could be more important to compute dose in the fields with beam modifiers such as wedges when beam hardening is more significant. The kernel tilting correction and kernel hardening correction increased computation time by about 3 times, and 0.5-1 times, respectively. This can be justified by more accurate dose calculations for the majority of clinical treatments.  相似文献   

8.
Frequency of use of asymmetric collimation (AC) at an academic radiation oncology center equipped with AC-capable linear accelerators was determined, and the type of use was cataloged. Records of patients beginning radiation treatment at U.C. Davis Cancer Center within a 3-month period (3/1/92 to 5/31/92) were reviewed. Forty-seven percent of 102 patients and 56% of 123 courses of treatment involved AC. Six common uses of AC were identified: beam-split field matching, planned boosts, other field size changes, adjustments to match divergent fields, matchline feathering, and opposed tangential fields. This study demonstrates that asymmetric collimation is a useful and powerful clinical treatment tool with widespread applications to radiation therapy.  相似文献   

9.
The feasibility of using various shapes and sizes of field limiting devices and collimators with beta-ray eye applicators has necessitated the study of dosimetry for these fields. A method of calculating surface and depth doses for any shaped field from the data for circular fields is presented. The depth dose evaluation is based on a measured dose function which is defined as the dose rate at a particular depth for a particular circular field. The evaluated values for the surface and depth dose were compared with experimentally obtained values for three non-circular fields. The good agreement in these data indicates the practicability of the method suggested.  相似文献   

10.
The factors contributing to the structure (i.e. amplitude and shape) of echoes from major reflecting boundaries in tissues are reviewed. It is shown that the pulsed nature of a scanner's emitted sound field introduces complex variations in echo shape which are not usually taken into account. Moreover, echo structure is strongly modified by the geometry of the interface and not only by the physical composition of the adjacent materials. These effects are shown to be characteristic of the basic reflection process with pulsed fields. The influence of some receiver transfer properties on the displayed echo is also indicated. It is suggested that the analysis of sound fields scattered from small-scale internal structures (echo ensemble analysis) is a preferred method of tissue characterization.  相似文献   

11.
The purpose of this paper is to determine whether using off-axis isoseparation curves to optimize the collimator rotation angle improves dose homogeneity. Eleven intact breast irradiation patients underwent computerized tomography (CT) treatment planning with 1 cm abutting slices. Central plane treatment planning, using 6 MV photons, tissue inhomogeneity corrections, and isocentric opposed tangent treatment fields, was performed. Collimators were rotated to match chest wall slope through the use of a beam's-eye-view setting. Patient separations were measured from the apex of the breast to the posterior field border on each axial CT slice. Sagittal-plane isoseparation curves were constructed from these measurements. Using these curves, the collimator rotation that minimized off-axis separation differences was determined. A comparison of off-axis dose inhomogeneity was performed for patients with a > or =10 degrees difference between this optimized collimator angle and the angle determined by chest wall slope. These comparative treatment plans differed only with respect to collimator angle rotation. The mean optimal collimator rotation angle differed significantly from the mean rotation angle which matched the chest wall slope (5.4 degrees vs. 11 degrees, respectively, P < 0.001). Four of the 11 patients had rotation angle differences of 10 degrees. In these patients, the optimization of collimator angle reduced the percentage of breast volume to "that" received > or =110% of the prescribed dose. For the patient with the largest breast size to the patient with the smallest breast size the decreases were, respectively, 5% (15% to 10%), 3% (24% to 21%), 1% (4% to 3%), and 1% (0.9% to 0%). The mean reduction in dose inhomogeneity was greatest in the inferior breast quadrants. At 6 cm and 4 cm off axis, the mean reductions in the percentages of the breast tissue to "that" received 110% of the prescribed dose were respectively 15.1% and 5.3 %. Optimizing the collimator angle through the use of isoseparation curves decreases dose inhomogeneity. The greatest improvements are in the inferior quadrants of the intact breast. The improved dose homogeneity may have clinical relevance in the treatment of patients with large breast sizes.  相似文献   

12.
PURPOSE: The use of escalated radiation doses to improve local control in conformal radiotherapy of prostatic cancer is becoming the focus of many centers. There are, however, increased side effects associated with increased radiotherapy doses that are believed to be dependent on the volume of normal tissue irradiated. For this reason, accurate patient positioning, CT planning with 3D reconstruction of volumes of interest, clear definition of treatment margins and verification of treatment fields are necessary components of the quality control for these procedures. In this study electronic portal images are used to (a) evaluate the magnitude and effect of the setup errors encountered in patient positioning techniques, and (b) verify the multileaf collimator (MLC) field patterns for each of the treatment fields. METHODS AND MATERIALS: The Phase I volume, with a planning target volume (PTV) composed of the gross tumour volume (GTV) plus a 1.5 cm margin is treated conformally with a three-field plan (usually an anterior field and two lateral or oblique fields). A Phase II, with no margin around the GTV, is treated using two lateral and four oblique fields. Portal images are acquired and compared to digitally reconstructed radiographs (DRR) and/or simulator films during Phase I to assess the systematic (CT planning or simulator to treatment error) and the daily random errors. The match results from these images are used to correct for the systematic errors, if necessary, and to monitor the time trends and effectiveness of patient imobilization systems used during the Phase I treatment course. For the Phase II, portal images of an anterior and lateral field (larger than the treatment fields) matched to DRRs (or simulator images) are used to verify the isocenter position 1 week before start of Phase II. The Portal images are acquired for all the treatment fields on the first day to verify the MLC field patterns and archived for records. The final distribution of the setup errors was used to calculate modified dose-volume histograms (DVHs). This procedure was carried out on 36 prostate cancer patients, 12 with vacuum-molded (VacFix) bags for immobilization and 24 with no immobilization. RESULTS: The systematic errors can be visualized and corrected for before the doses are increased above the conventional levels. The requirement for correction of these errors (e.g., 2.5 mm AP shift) was demonstrated, using DVHs, in the observed 10% increase in rectal volume receiving at least 60 Gy. The random (daily) errors observed showed the need for patient fixation devices when treating with reduced margins. The percentage of fields with displacements of < or = 5.0 mm increased from 82 to 96% with the use of VacFix bags. The rotation of the pelvis is also minimized when the bags are used, with over 95% of the fields with rotations of < or = 2.0 degrees compared to 85% without. Currently, a combination of VacFix and thermoplastic casts is being investigated. CONCLUSION: The systematic errors can easily be identified and corrected for in the early stages of the Phase I treatment course. The time trends observed during the course of Phase I in conjunction with the isocenter verification at the start of Phase II give good prediction of the accuracy of the setup during Phase II, where visibility of identifiable structures is reduced in the small fields. The acquisition and inspection of the portal images for the small Phase I fields has been found to be an effective way of keeping a record of the MLC field patterns used. Incorporation of the distribution of the setup errors into the planning system also gives a clearer picture of how the prescribed dose was delivered. This information can be useful in dose-escalation studies in determining the relationship between the local control or morbidity rates and prescribed dose.  相似文献   

13.
Escherichia coli JM83 [F- ara delta(lac-proAB) rpsL [phi 80d delta (lacZ)M15]] in midlog growth phase at 30 degrees C were exposed to 60 Hz sinusoidal magnetic field of 3 mT of nonuniform diverging flux, inducing a nonuniform electric field with a maximum intensity of 32 microV/cm using an inductor coil. Exposed and unexposed control cells were maintained at 30.8 +/- 0.1 degrees C and 30.5 +/- 0.1 degrees C, respectively. Quadruplicate samples of exposed and unexposed E. coli cells were simultaneously radiolabeled with 35S-L-methionine at 10 min intervals over 2 hr. Radiochemical incorporation into proteins was analyzed via liquid scintillation counting and by denaturing 12.5% polyacrylamide gel electrophoresis. The results showed that E. coli exposed to a 60 Hz magnetic field of 3 mT exhibited no qualitative or quantitative changes in protein synthesis compared to unexposed cells. Thus small prokaryotic cells (less than 2 microns x 0.5 micron) under constant-temperature conditions do not alter their protein synthesis following exposure to 60 Hz magnetic fields at levels at 3 mT.  相似文献   

14.
The ability of the asymmetric spin-echo (ASE) pulse sequence to provide different degrees of spin-echo (SE)-type and gradient-echo (GE)-type contrast when imaging media containing magnetic inhomogeneities is investigated. The dependence of the ASE signal on the size of magnetic field perturbers is examined using theory, computer simulations, and experiment. A theoretical prediction of the ASE signal is obtained using the Anderson-Weiss mean field theory, the results of which are qualitatively supported by computer simulations and experimental studies. It is shown that the ASE sequence can be used to tune the range of perturber sizes that provide the largest contributions to susceptibility contrast effects.  相似文献   

15.
BACKGROUND: Cryotherapy administered to eyes with severe acute-phase (threshold) retinopathy of prematurity benefits retinal structure and visual acuity compared with the natural course of the retinopathy. OBJECTIVES: To determine the extent of peripheral field abnormalities in eyes with threshold retinopathy of prematurity that had retinal structure preserved by cryotherapy. METHODS: Kinetic perimetry was performed with a Goldmann perimeter by masked testers on patients in whom bilateral threshold retinopathy of prematurity developed and who had been randomly assigned to undergo cryotherapy in one eye and no cryotherapy in the fellow eye. With the V-4-e and the II-4-e targets, eight meridians were tested: 0 degrees, 45 degrees, 90 degrees, 135 degrees, 180 degrees, 225 degrees, 270 degrees, and 315 degrees. The median value of three presentations in each meridian was accepted as the extent in that meridian. RESULTS: Fourteen eyes (eight treated and six control) of eight patients (mean age, 9.9 years; range, 6 to 11 years) had adequate vision to undergo fields testing. Mean (+/-SE) extent of visual field for treated vs control eyes was 36 degrees +/- 3 degrees vs 46 degrees +/- 6 degrees for the II-4-e target and 49 degrees +/- 4 degrees vs 59 degrees +/- 6 degrees for the V-4-e target. This difference was consistent across all eight meridians for either target, and repeated-measures analysis of variance showed that cryotherapy was associated with smaller visual field extent for both target sizes (P=.08). CONCLUSION: The results of this small pilot study suggest that eyes that have retinal structure and acuity preserved by cryotherapy for severe acute-phase retinopathy of prematurity have slightly smaller visual fields than untreated eyes with severe acute-phase retinopathy of prematurity that had vision preserved.  相似文献   

16.
Evoked, extracellularly recorded field potentials and whole-cell current-clamp recordings were used to assay the effects of variations in dissection method and incubation temperature on the electrophysiology of CA1 neurons in hippocampal slices. Slices were cut with either a vibratome or a tissue chopper, and incubated at 28-30 degrees C, room temperature (19-21 degrees C), or in cool solution (13-15 degrees C) which was allowed to passively warm to room temperature while the slices were incubating ('cold-shock', CS). Although no effects of dissection method were observed, it was found that incubation temperature had profound effects on synaptically, but not non-synaptically evoked field potentials. Cold-shocked slices, cut with either a vibratome or a tissue chopper, exhibited epileptiform and spontaneously potentiating orthodromic field potentials. Slices incubated at warmer temperatures demonstrated responses that were larger in amplitude, more stable and much less epileptiform. In response to orthodromic stimulation, CS neurons fired more action potentials than did neurons in slices incubated at room temperature. Further, CS neurons generated smaller inhibitory postsynaptic potentials. Field potential changes resulting from graded hypoxia were not significantly affected by the temperature at which the slices were incubated. These data suggest that the electrophysiology of the hippocampal slice can be altered by the methods used to prepare the tissue. This finding may account for some of the discrepancies that exist between laboratories, and serves to underscore the importance of accurately reporting detailed protocols. Further, CS hippocampal tissue may represent a novel in vitro model of epileptiform activity.  相似文献   

17.
PURPOSE: In axial, coplanar treatments with multiple fields, the superior and inferior ends of a planning target volume (PTV) are at risk to get underdosed due to the overlapping penumbras of all treatment fields. We have investigated a technique using intensity modulated x-ray beams that allows the use of small margins for definition of the superior and inferior field borders while still reaching a minimum PTV-dose of 95% of the isocenter dose. METHODS AND MATERIALS: The applied intensity modulated beams, generated with a multileaf collimator, include narrow (1.1-1.6 cm) boost fields to increase the dose in the superior and inferior ends of the PTV. The benefits of this technique have been assessed using 3D treatment plans for 10 prostate cancer patients. Treatment planning was performed with the Cadplan 3D planning system (Varian-Dosetek). Dose calculations for the narrow boost fields have been compared with measurements. The application of the boost fields has been tested on the MM50 Racetrack Microtron (Scanditronix Medical AB), which allows fully computer-controlled setup of all involved treatment fields. RESULTS: Compared to our standard technique, the superior-inferior field length can be reduced by 1.6 cm, generally yielding smaller volumes of rectum and bladder in the high dose region. For the narrow boost fields, calculated relative dose distributions agree within 2% or 0.2 cm with measured dose distributions. For accurate monitor unit calculations, the phantom scatter table used in the Cadplan system had to be modified using measured data for square fields smaller than 4 x 4 cm2. The extra time needed at the MM50 for the setup and delivery of the boost fields is usually about 1 min. CONCLUSION: The proposed use of intensity modulated beams yields improved conformal dose distributions for treatment of prostate cancer patients with a superior-inferior field size reduction of 1.6 cm. Treatments of other tumor sites can also benefit from the application of the boost fields.  相似文献   

18.
PURPOSE: The effect of systematic and stochastic setup error on the dose delivered to the gap region for the three field radiation treatment of medulloblastoma is studied. The consequences of such setup error is discussed. METHODS AND MATERIALS: The treatment of medulloblastoma is typically a 3 field technique, in which two lateral cranial fields are matched with a spine field. The x-ray dose delivered to the region between the matched fields depends upon the gap size. The choice of the gap width between the cranial and spinal fields is controversial. It is currently a compromise between minimizing the risk of dose hot spots to the spine, and the associated clinical complications, as well as the magnitude of cold spots (underdosing) across the gap, with the associated risk of disease recurrence. In this paper, we examine the effect of gap width with a moving junction, referred to as "field feathering", on the dose across the field junction for a 6MV photon beam. In addition, we have studied 129 portal films and 40 simulation films to assess the accuracy and precision of patient setup during treatment with a plan involving feathered fields. Selected landmarks observable on both portal and simulation films were identified and the variation in the distances to the field edges measured. The distribution of patient setup error was convoluted with the beam profiles for a 6MV linac. These convoluted field edges were used obtain dose profiles across the gap region as a function of gap separation. The consequences for therapy are discussed. In addition, analysis of patient setup error on an alternative treatment involving beam modifiers to broaden the beam penumbra is discussed. RESULTS: The magnitude of the spatial stochastic and systematic setup error was determined to be approximately three and two millimeters respectively. The dosimetric consequences of patient setup error lead to over and under dosing in the spinal gap region for the three field technique. The degree of under or over dose depends on the nature and magnitude of the patient setup error. CONCLUSIONS: The effect of patient setup error can lead to significant dosimetric errors in the dose to the gap region depending on the magnitude of the setup errors. The effective over and under dose can be compensated by the use beams modifiers such as a beam spoiler or vibrating jaws.  相似文献   

19.
OBJECTIVE: This study was designed to determine whether the relative afferent pupillary defects observed commonly in amblyopic eyes are associated with a uniform depression of the pupillary light reflex throughout the visual field or solely by a focal decrease in pupillary response near fixation. DESIGN: The authors used pupil perimetry to evaluate the contraction amplitude of the pupil in response to focal light stimuli at 76 points throughout the 30 degrees field in each eye of 28 patients with amblyopia. The "pupil fields" were recorded using a computerized infrared pupillograph linked to a Humphrey Field Analyzer, so that the pupil contraction could be recorded in response to perimetric light stimuli. PARTICIPANTS: Nine patients had strabismic amblyopia, ten had anisometropia, six had a combination of anisometropia and strabismus, and three had deprivation amblyopia due to monocular congenital cataract. MAIN OUTCOME MEASURES: Mean pupillary contraction amplitude for the entire field and focal amplitudes at each tested location were compared. Mixed-model analysis of variance was used to assess effects of perimetry location, type of amblyopia, and interaction effects. RESULTS: The overall average of all the pupil contractions throughout the 30 degrees field was less for the amblyopic eye compared with that of the fellow eye. This decrease in focal pupil response for amblyopic eyes was present in each type of amblyopia and was greatest for deprivation amblyopia. The contraction amplitude was depressed diffusely throughout the pupil field and showed neither focal deficits nor a selective depression about fixation. CONCLUSION: Amblyopia produces a global depression of focal pupillary responses across the entire 30 degrees field.  相似文献   

20.
Small-field and stereotactic radiosurgery (SRS) dosimetry with radiation detectors, used for clinical practice, have often been questioned due to the lack of lateral electron equilibrium and uncertainty in beam energy. A dosimetry study was performed for a dedicated 6 MV SRS unit, capable of generating circular radiation fields with diameters of 1.25-5 cm at isocentre using the BEAM/EGS4 Monte Carlo code. With this code the accelerator was modelled for radiation fields with a diameter as small as 0.5 cm. The radiation fields and dosimetric characteristics (photon spectra, depth doses, lateral dose profiles and cone factors) in a water phantom were evaluated. The cone factor (St) for a specific cone c at depth d is defined as St(d, c) = D(d, c)/D(d, c(ref)), where c(ref) is the reference cone. To verify the Monte Carlo calculations, measurements were performed with detectors commonly used in SRS such as small-volume ion chambers, a diamond detector, TLDs and films. Results show that beam energies vary with cone diameter. For a 6 MV beam, the mean energies in water at the point of maximum dose for a 0.5 cm cone and a 5 cm cone are 2.05 MeV and 1.65 MeV respectively. The values of St obtained by the simulations are in good agreement with the results of the measurements for most detectors. When the lateral resolution of the detectors is taken into account, the results agree within a few per cent for most fields and detectors. The calculations showed a variation of St with depth in the water. Based on calculated electron spectra in water, the validity of the assumption that measured dose ratios are equal to measured detector readings was verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号