首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
系统分析和研究了采用“EAF→ LF→VD→CC”工艺流程生产试验钢时,各工序的全氧与氮含量的变化情况、钢液中非金属夹杂物的生成与变化以及精炼初渣对夹杂物去除的影响.结果表明:试验钢在LF精炼过程中w(T.O)平均下降42.83%,经VD真空处理后w(T.O)和w(N)平均下降48.77%和10.72%.在LF精炼过程中,钢液中非金属夹杂物按“Al2O3系夹杂物→MgO-Al2O3系夹杂物→CaO-MgO-Al2O3系夹杂物”顺序转变,其中MgO-Al2O3系夹杂物向CaO-MgO-Al2O3系夹杂物转变是由外向内逐步进行,并且夹杂物中CaO与MgO互不相溶.精炼初渣碱度控制在2.5左右对于炉渣吸收夹杂较为有利.  相似文献   

2.
SPHC钢LF精炼过程的抑制回硅与脱硫研究   总被引:3,自引:0,他引:3  
李云  李宏  徐志荣  李艳芳  王新华 《钢铁》2007,42(2):28-30
生产SPHC钢在LF处理脱硫过程中不能抑制回硅.根据热力学理论推导出降硅参数A/S和脱硫参数C/A,应用共存理论作用浓度模型,在试验渣系成分范围内计算CaO、SiO2、Al2O3的活度求解A/S和C/A,探讨了它们与w(CaO)/w(Al2O3)、w(CaO)/w(SiO2)的关系.分析结果认为,控制w(CaO)/w(Al2O3)、w(CaO)/w(SiO2)在合适的范围内,可以有效地分别或同时抑制回硅和脱硫.与试验结果对照得知,A/S和C/A分别与LF渣系的抑制回硅和脱硫能力相对应,根据A/S和C/A进行控制是可行的.  相似文献   

3.
 为了实现LF热态钢渣的循环利用,对目前武钢LF热态钢渣两次循环利用工艺中精炼渣的组成、脱硫能力及吸收夹杂能力的变化进行了分析研究。结果表明,LF热态钢渣循环利用后钢水的脱硫率可以达到90%以上,精炼终点w([S])可以达到0.001%的水平;相对于未循环工艺,钢中w(T[O])减少17.50×10-6,w([N])减少17.00×10-6,夹杂物数量减少4.47个/mm2。根据两次热循环利用结果得出:通过控制回收的渣量及补加石灰的量,可保证循环后初始炉渣中的w((S))小于0.20%,终渣碱度(w(CaO)/w(SiO2))在12.00~20.00范围,w(CaO)/w(Al2O3)为1.75~2.00,从而使精炼渣的脱硫效率、w((S))/w([S])不受循环次数的限制。  相似文献   

4.
利用Factsage软件,对20CrMnTiH1齿轮钢中(CaO)m(Al2O3)n与CaS夹杂形成进行了热力学分析.结果表明:当钢中w(Al)s=0.035%时,要使钢中夹杂物完全转变为液态(CaO)12(Al2O3)7,应控制钢中w(S)低于0.006 7%,w(Ca) /w(Al)高于0.12;本钢液成分条件下,在炼钢温度下不会自发生成CaS夹杂,当钢液温度下降到1 739.8 K时,凝固前沿的w(S)达到0.015 9%,此时会与低熔点(CaO)12(Al2O3)7夹杂表面的CaO反应析出CaS夹杂.通过对某钢厂生产的20CrMnTiH1齿轮钢铸坯中夹杂物的检验发现,实际情况与热力学计算相符合.同时,通过硫偏析方程计算得到:20CrMnTiH1齿轮钢在凝固过程中不析出CaS夹杂的条件为将硫的初始质量分数控制在0.000 318%以下.  相似文献   

5.
采用扫描电镜和相图分析软件研究两种不同精炼工艺下高强船板钢中夹杂物的变化行为,结果表明:两种精炼工艺下,钢中的夹杂物变化为Al2 O3→CaO·Al2O3·MgO→CaO·(Al2O3)·CaS→CaO·CaS·(Al2O3);与LF炉为主的精炼工艺相比,采用以VD炉为主的精炼工艺,钢水中夹杂物密度从11.5个/mm2降至3.4个/mm2,小于5μm的夹杂物数量下降明显.  相似文献   

6.
超低氧含量弹簧钢中非金属夹杂物的控制   总被引:3,自引:1,他引:2  
为了减小夹杂物对Al脱氧弹簧钢的危害,通过钢渣之间、钢液和夹杂物之间的反应尽快使脱氧产物Al2O3夹杂变性为低熔点的铝酸钙夹杂.炉渣ω(CaO)/ω(MgO)高,夹杂物更容易转变为铝酸钙夹杂物,炉渣ω(CaO)/ω(MgO)大于8时,在LF精炼中期,夹杂物已经由MgO·Al2O3尖晶石向铝酸钙转变;炉渣的氧化性延缓了夹杂物向铝酸钙的转变;钢液S、Al含量低,夹杂物更容易控制在低熔点区域内.随着钢液T.O的降低,夹杂物中氧化物夹杂占的比例逐渐减少,CaS夹杂占的比例逐渐增加.  相似文献   

7.
《炼钢》2015,(6)
对"BOF→LF→CC"流程铝脱氧造较高碱度精炼渣工艺生产60Si2MnA弹簧钢冶炼过程的洁净度进行了调研分析,并从理论上分析了冶炼过程钢中T.O、氮含量和夹杂物数量、尺寸及类型的转变过程。结果表明:冶炼过程钢中T.O含量逐渐降低,氮含量增加,盘条中平均w(T.O)=14.5×10-6,w(N)=30.4×10-6。夹杂物类型变化为Al2O3-SiO_2→Al2O3-SiO_2-Mg O-CaO四元复合夹杂物→Al2O3-SiO_2-MgO-CaO-CaS五元复合夹杂物。控制钢中w(Al)=0.03%左右,钙处理后钢水w(Ca)/w(Al)=0.08~0.11,Al2O3夹杂物能得到充分变性,形成的四元夹杂物处于较低熔点区,而五元夹杂物因含较多高熔点CaS而偏离低熔点区。  相似文献   

8.
《炼钢》2017,(4)
针对CSP工艺中高碳钢生产中存在的水口结瘤及表面质量问题,通过工业试验对"BOF→LF→薄板坯连铸"工艺流程51CrV4弹簧钢冶炼过程钢水洁净度及夹杂物形貌、尺寸、组成变化进行了研究分析。试验结果表明,通过造高碱度精炼渣和吹氩工艺,中包钢水w(T.O)可控制在20×10~(-6)左右,w(N)可控制在45×10~(-6)左右;钢中夹杂数量16.62个/mm~2,不大于10μm夹杂比例超过97%;钙处理后,钢中夹杂由固态Al_2O_3-MgO、SiO_2-CaO-Al_2O_3夹杂转变为液态CaO-SiO_2/MgO-Al_2O_3、CaO-MgO/SiO_2-Al_2O_3-CaS复合夹杂。从理论上分析了钙处理对夹杂物变性的条件,钢中w(Al_s)=0.025%时,控制w(Ca)=0.001%,w(S)≤0.001%即可使Al_2O_3转变为液态夹杂。  相似文献   

9.
采用Factsage热力学软件和KTH模型分别绘制了CaO-SiO2-Al2O3渣系等CaO、等Al2 O3活度、等温度线图和等硫容量图,探讨了LF精炼渣碱度、ω(CaO)/ω(Al2O3)、曼内斯曼指数与渣系熔点、硫容量以及吸附Al2O3夹杂能力的关系,最终获得高洁净度铝镇静钢理论渣系目标成分:ω (CaO)=50%~55%,ω(Al2O3)=22 %~26%,ω(SiO2)=10%~12%,ω(MgO)=5%~8%.40Cr钢的现场试验证明应用该渣系铸坯ω(T.O)能够稳定控制在15×10-6以下,ω(S)平均达到90×10-6,洁净度达到了国内先进水平.  相似文献   

10.
针对SPCC钢的生产工艺情况,研究精炼渣与夹杂物相关性,分析精炼渣化学成分、w(CaO)/w(Al2O3)等对钢中夹杂物大小、形貌、类别等的影响。研究表明,精炼渣w(CaO)/w(Al2O3)为1.38~1.66时,钢中夹杂物分布较好,即大颗粒夹杂物比率较小,小颗粒夹杂物比率较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号