首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium in normal melting conditions in air atmosphere present as Ti4+ ion in basic silicate glasses exhibited an ultra-violet cut-off in silicate glasses, viz. soda-magnesia-silica, soda-magnesia-lime-silica and soda-lime-silica glasses. This indicates that Ti4+ ion can be a good replacement for Ce4+ ion in producing UV-absorbing silicate glasses for commercial applications. The wavelength maxima at which the infinite absorption takes place in glasses was found to be around 310 nm against Ti-free blank glass in UV-region. The mechanism of electronic transition from O2- ligands to Ti4+ ion was suggested as L→ M charge transfer. The low energy tails of the ultra-violet cut-off were found to obey Urbach’s rule in the optical range 360–500 nm. The fluorescence spectra of these glasses were also studied and based on the radiative fluorescent properties it was suggested that the soda-lime-silica glass containing Ti4+ ion with greater emission cross-section would emit a better fluorescence than the corresponding soda-magnesia-lime-silica and sodamagnesia-silica glasses. The shift of emission wavelengths maxima towards longer wavelength in titania introduced silicate glasses was observed on replacement of MgO by CaO which may be attributed due to an increase in basicity of the glass system.  相似文献   

2.
The fracture of metallic glasses(MGs)of different compositions and sizes down to micrometers under torsion loading were systematically investigated.Contrary to the flat shear fracture along the circumfer-ential plane as commonly supposed under torsion,we find that the torsion fracture of metallic glasses can deviate from flat shear plane,and the fracture angle is closely dependent on the composition and the size of MG samples.With a conversion method,we show that the torsion fracture of both millimeter-and micrometer-sized MGs can be described by the ellipse fracture criterion as originally proposed for the tension fracture.The deviation from the circumferential shear plane under torsion is further shown to intrinsically relate to the fracture toughness of MGs.The tougher MG tends to have a smaller fracture angle with respect to the maximum shear plane,and vice versa,indicating a correlation between the fracture toughness and pressure/normal stress sensitivity in MGs.Our results provide new insights on the fracture mechanism and are helpful to design and control the deformation and fracture behavior of MGs under torsion loading.  相似文献   

3.
《Optical Materials》2014,36(12):2435-2439
The stress-induced birefringence (termed photoelastic response) in oxide glasses has important consequences for several applications. In this work, we provide new insights into the structural origins of the photoelastic response of silicate glasses by determining the composition dependence of the stress optic coefficient (C) of forty-nine silicate glasses containing different alkali and alkaline earth oxides. We find that the value of C decreases with increasing modifier-to-silica ratio and increases with alumina-to-silica ratio. The scaling of stress optic coefficient with composition can be predicted based on the average ratio of bond metallicity to cation coordination number in the glass, which varies as a function of composition. This is evidence that the details of the glass network structure need to be considered in order to account accurately for the composition dependence of C, a result that is consistent with a previously proposed empirical model and with topological constraint theory. Our results enable an improved control of the photoelastic response of silicate glasses through compositional design.  相似文献   

4.
The theoretical bulk modulus and Poisson’s ratio of the 65SiO2–15PbO–5CaO–(15−X)K2O–XNa2O glass system (X=0–15 mol%) have been calculated using the bond compression model. The atomic ring size of the network has been also obtained for each sample according to the ring deformation model. These parameters have been interpreted quantitatively in terms of the most important structure factors. The composition dependence of these parameters showed that the elasticity and hence the response of this glass system is influenced by the chemical nature of the modifying oxides. Moreover, variation of the estimated atomic ring size with the ratio of bond compression (Kbc) to experimental (Ke) bulk modulus was studied to obtain more information about the structure of these glasses. The results showed that the small values of Kbc/Ke are attributed to the very close (small-ringed) three-dimensional network of these glasses.  相似文献   

5.
ABSTRACT Crack‐tip constraint effects (or T‐stress effects) on the elastic–plastic fracture behaviour in strain gradient materials are analysed in the present study. The T‐stress effects on the stress distributions along the plane ahead of the stationary and growing crack tip, respectively, are analysed by using the Fleck and Hutchinson strain gradient plasticity formation. For a steadily growing crack, the T‐stress effects on the steady‐state fracture toughness are analysed by adopting the embedded fracture process zone model. In addition, the analysis for the growing crack is applied to an interfacial cracking experiment for a metal/ceramic system, and the material length‐scale parameter appearing in the strain gradient plasticity theory is predicted. In the present analyses, a new finite element method specially designed for strain gradient problems by Wei and Hutchinson is adopted.  相似文献   

6.
超音速火焰喷涂硅酸盐玻璃涂层工艺研究   总被引:1,自引:0,他引:1  
采用超音速火焰喷涂技术制备了硅酸盐玻璃涂层,通过扫描电镜、能谱、衍射和强度试验研究了涂层的组织特征、机械性能等.研究表明,制备玻璃涂层的最佳工艺为:粉末颗粒尺寸为25~50μm,氧气流量34~36m3/h,煤油流量13~14L/h,喷涂距离25cm;涂层组织较致密,玻璃涂层厚度可达到0.5mm以上;涂层基本呈非晶态,热喷涂后玻璃涂层冷却速度对涂层的析晶行为有一定影响;涂层与基体之间的结合形式为机械结合,涂层的内聚强度约为8MPa,其拉伸断裂形式为宏观脆性断裂,涂层具有一定硬度和抗冲击性能.  相似文献   

7.
(1 - x)SiO2-xNa2O glasses have been studied by Brillouin scattering when sodium oxide molar concentration x, varies in the range 0.05 < x < 0.44. Non-linear dependence of elastic constants on sodium oxide concentration is shown unambiguously for the first time and the compressive elastic constant C11 experienced a non-monotonic behaviour with a minimum value around x = 0.15. These results are compared with those obtained previously in the case of other alkali silicate glasses (Li, K). The variations of elastic constants of these glasses with the alkali metal nature and concentration are discussed on the basis of relations with the molar density of silicon atoms and the force constants between modifiers and non-bridging oxygens.  相似文献   

8.
Alumino silicate glasses of a very broad range of molar compositions doped with 1  1020 Eu3+ cm−3 (about 0.2 mol% Eu2O3) were prepared. As network modifier oxides Li2O, Na2O, K2O, MgO, CaO, SrO, BaO, ZnO, PbO, Y2O3 and La2O3 have been used. All glasses show relatively broad fluorescence excitation and emission spectra. For most glasses only a weak effect of the glass composition on the excitation and emission spectra is observed. Although the glasses should be structurally similar, notable differences are found for the fluorescence lifetimes. These increase steadily with decreasing mean atomic weight, decreasing refractive index and decreasing optical basicity of the glasses, which may be explained by local field effects. An exception from this rule are the strontium, barium and potassium containing glasses, which show significantly increased fluorescence lifetimes despite of their high refractive index, optical basicity and molecular weight. The non mono-exponential fluorescence decay curves as well as the fluorescence spectra indicate a massive change in the local surroundings of the doped rare earth ions for these glasses.  相似文献   

9.
Finite fracture mechanics: A coupled stress and energy failure criterion   总被引:2,自引:0,他引:2  
The aim of the present paper is to introduce a new failure criterion in the framework of Finite Fracture Mechanics. Criteria assuming that failure of quasi-brittle materials is affected by stress or energy flux acting on a finite distance in front of the crack tip are widely used inside the scientific community. Generally, this distance is assumed to be small compared to a characteristic size of the structure, i.e. to any length describing the macroscale. A key point of the present paper is to analyse what happens if the smallness assumption does not hold true. The proposed approach relies on the assumption that the finite distance is not a material constant but a structural parameter. Its value is determined by a condition of consistency of both energetic and stress approaches. The model is general. In order to check its soundness, an application to the strength prediction for three point bending tests of various relative crack depths and of different sizes is performed. It is seen that, for the un-notched specimens, the present model predicts the same trend as the Multi-Fractal Scaling Law (MFSL). Finally, a comparison with experimental data available in the literature on high strength concrete three point bending specimens is performed, showing an excellent agreement. It is remarkable to observe that the method presented herein is able to provide the fracture toughness using test data from un-notched specimens, as long as the range of specimen sizes is broad enough.  相似文献   

10.
The dissolution rate of multicomponent silicate glasses in a 2.9m aqueous HF solution is investigated as a function of its composition. The glasses studied are composed of SiO2, B2O3, Al2O3, CaO, MgO, ZnO, Na2O and K2O, covering the compositions of most of the technologically important glasses. Unlike many physical properties, no linear relations are observed between the composition of the glass and its dissolution rate. The dissolution rate of a multicomponent silicate glass is found to be largely determined by two factors: The degree of linkage or connectivity of the silicate network and the concentration of SiO2 in the glass. It is proposed that the dissolution of the glasses is preceded by the leaching of alkali and alkaline earth components present in the glass, followed by the subsequent dissolution of the leached layer. Probably fluorine species will diffuse into the leached layer to enhance the dissolution rate. Analysis of the activation energy data indicates that in some corrosive glasses the leaching itself becomes rate determining.  相似文献   

11.
Absorption characteristics of Cu2+, Mn3+ and Cr3+ ions in ternary silicate (20Na2O·10RO·70SiO2, where R=Ca, Sr, Ba) glasses were investigated. The intensities of absorption bands due to Cu2+ ion was found to increase with increasing ionic radii of the alkaline earth ions whereas it was found to decrease in case of Mn3+ and Cr3+ ions with increasing ionic radii of the alkaline earth ions. The results were discussed in the light of relation between linear extinction coefficients of these ions and coulombic force of alkaline earth ions. The change in intensities of Cu2+, Mn3+ and Cr3+ ion is attributed due to change in silicate glass compositions.  相似文献   

12.
A database derived from tests on specimens with a large range of ligament (b) and thickness (B) dimensions was systematically analyzed to evaluate constraint loss and statistical size effects on cleavage fracture toughness. The objectives were to: (1) decouple size effects related to constraint loss, mediated by b and B, from those arising from statistical effects, primarily associated with B; and, (2) develop procedures to transfer toughness data to different conditions of constraint and B. The toughness database for a Shoreham pressure vessel steel plate, tested at a common set of conditions, was described in a companion paper. Quantification of constraint loss was based on an independently calibrated 3D finite-element critical stress-area, σ-[KJm/KJc], model. The measured toughness data, KJm, were first adjusted using computed [KJm/KJc] constraint loss factors to the corresponding values for small scale yielding conditions, KJc=KJm/[KJm/KJc]. The KJc were then statistically adjusted to a KJr for a reference Br = 25.4 mm. The B adjustment was based on a critically stressed volume criterion, modified to account for a minimum toughness, Kmin, consistent with modest modifications of the ASTM E 1921 Standard procedure. The combined σ-[KJm/KJc]-Kmin adjustment procedure was applied to the Shoreham b − B database, producing a homogeneous population of KJr data, generally within the expected scatter. The analysis suggests that: (1) there may be a maximum B beyond which statistical size effects diminish, and (2) constraint loss in the three-point bend specimens begins at a relatively low deformation level. A corresponding analysis, based on a Weibull stress, σw-[KJm/KJc]-Kmin, adjustment procedure, yielded similar, but somewhat less satisfactory, results. The optimized adjustment procedure was also applied to other KJm data for the Shoreham plate from this study, as well as a large database taken from the literature. The population of 489KJr data points, covering an enormous range of specimen sizes, geometries and test temperatures, was found to be consistent with the same master curve T0 = −84 °C derived from the b − B database. Thus, calibrated micromechanical models can be used to treat size and geometry effects on KJm, facilitating using small specimens and data transfer to predict the fracture limits of structures.  相似文献   

13.
Multimillion atom molecular-dynamics (MD) simulations are performed to investigate dynamic fracture in glasses and nanostructured ceramics. Using multiresolution algorithms, simulations are carried out for up to 70 ps on massively parallel computers. MD results in amorphous silica (a-SiO2) reveal the formation of nanoscale cavities ahead of the crack tip. With an increase in applied strain, these cavities grow and coalesce and their coalescence with the advancing crack causes fracture in the system. Recent AFM studies of glasses confirm this behavior. The MD value for the critical stress intensity factor of a-SiO2 is in good agreement with experiments. Molecular dynamics simulations are also performed for nanostructured silicon nitride (n-Si3N4). Structural correlations in n-Si3N4 reveal that interfacial regions between nanoparticles are amorphous. Under an external strain, nanoscale cavities nucleate and grow in interfacial regions while the crack meanders through these regions. The fracture toughness of n-Si3N4 is found to be six times larger than that of crystalline -Si3N4. We also investigate the morphology of fracture surfaces. MD results reveal that fracture surfaces of n-Si3N4 are characterized by roughness exponents 0.58 below and 0.84 above a certain crossover length, which is of the order of the size of Si3N4 nanoparticles. Experiments on a variety of materials reveal this behavior. The final set of simulations deals with the interaction of water with a crack in strained silicon. These simulations couple MD with a quantum-mechanical (QM) method based on the density functional theory (DFT) so that chemical processes are included. For stress intensity factor K=0.4 MPa m1/2, we find that a decomposed water molecule becomes attached to dangling bonds at the crack or forms a Si-O-Si structure. At K=0.5 MPa m1/2, water molecules decompose to oxidize Si or break Si-Si bonds.  相似文献   

14.
The development of structural ceramics and ceramic composites often relies on assumptions about their cracking and fracture characteristics under load. It is most important to understand the nature of the cracking processes and the interaction between neighbouring cracks. In other words, a clear picture of the dynamic micromechanisms of cracking and the accumulation of damage is essential to the development of sound physical models to explain measurements of the strength and toughness of these materials.  相似文献   

15.
Creep strength enhanced ferritic steels contain 9 to 12% Cr and were developed to exhibit excellent high temperature properties. These should be achieved when the microstructure exhibits a tempered martensitic matrix containing a substructure with a high dislocation density and a uniform dispersion of fine, second phase precipitates. It is interesting to note that when properly processed the typical alloy compositions for these steels provide reasonable strength but can exhibit brittle creep behaviour. The levels of ductility required in engineering applications necessitate proper control of composition (including trace elements), steel making and processing and all heat treatments. The properties needed for modern design methods can only be obtained using validated procedures for both uniaxial and multiaxial testing and documentation to establish the mechanisms controlling deformation and fracture for relevant stress states.  相似文献   

16.
The present paper is dedicated to the mechanical and fracture characterization of a specific earthen material, that is, the shot-earth 772. Although such a material has been recently characterized from a microstructural, chemical and physical point of view, the knowledge of its mechanical and fracture properties (essential for extending its use in construction industry) is still lacking. Such characterizations are here performed both experimentally, through laboratory tests, and numerically, through a FE model. The experimental tests (i.e., flexural, compression, and fracture tests) are carried out on shot-earth specimens according to recommendations available for concrete and a method proposed by the present authors, named Modified Two-Parameter Model. The numerical analyses are performed by employing a micromechanical model (implemented in a nonlinear 2D FE homemade code), which allows to simulate both flexural and fracture behavior of the shot-earth examined. Finally, the obtained numerical results are compared with the experimental ones.  相似文献   

17.
采用铜模吸铸法制备了(Zr0.55Al0.1Ni0.05Cu0.30)100-xTix(x=0、2、4、6、8)板状哑铃型金属玻璃基复合材料试样。用X射线衍射(XRD)、岛津AG-10TA万能材料力学试验机和JSM-6700F场发射扫描电子显微镜(SEM)对试样的组织结构以及断裂韧性进行了测试。结果表明,当x=0、2、4时,试样为非晶-晶体复合材料,当x=6、8时,试样为晶体材料。表明通过调整Ti的含量可以制备出金属玻璃基复合材料。采用三点弯曲法测定了复合材料的断裂韧性,当x=0、2、4时,试样的断裂韧性KIC值分别为10.529、5.142和3.446MPa.m1/2。  相似文献   

18.
Effects of fracture, stress and isothermal annealing of Fe-Ni based metallic glasses have been investigated using the ferromagnetic resonance technique.fmr linewidth is quite sensitive to changes in the magnetic and structural order in metallic glasses, andfmr lineshape seems to provide useful qualitative information on the mechanical state of these systems. Our observations are compared with recent work of Baianu and co-workers.  相似文献   

19.
Longitudinal and shear wave ultrasonic velocities are reported in Se-P glasses over the composition range 0–50 at % P. The glass transition temperaturesT g show maxima at 30 and 50 at % of P, in consonance with earlier data. The bulk modulus shows minima at these compositions, contrary to the expectation of maxima. These are discussed in relation to the formation of compounds at specific compositions and the nature of the covalent bonding in the glasses.  相似文献   

20.
This paper describes the synthesis and spectroscopic studies of the glass system, 20Na2O-(20-x) ZnO-xZnF2-60B2O3(x = 0, 5, 10, 15, 20), prepared by melt quenching method. The analyses of DSC and XRD did not show the crystallinity of the glass sample. 11B MAS-NMR shows the presence of sharp peak around −14 ppm. From the IR studies, the broadening of the peak around 1200–1400 and 800–1100 cm−1 shows the presence of mixed linkages like B-O-B, B-O-Zn in the network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号