共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
高温自润滑陶瓷刀具材料及其切削性能的研究 总被引:10,自引:1,他引:10
以TiB2为添加剂,Al2O3为基体,制备了Al2O3/TiB2陶瓷刀具材料。以该陶瓷刀具对淬硬钢进行高速干切削试验,利用其在切削高温作用下的摩擦化学反应,在刀具材料表面原位生成具有润滑作用的反应膜,从而实现Al2O3/TiB2陶瓷刀具材料本身的高温自润滑。研究了Al2O3/TiB2陶瓷刀具在切削高温作用下刀具表面的摩擦化学反应机理,分析了刀具表面自润滑膜的组成结构。结果表明:Al2O3/TiB2陶瓷刀具在干切削淬硬钢时,当切削速度大于120 m/min时,开始表现出高温自润滑性能。自润滑膜的组成为Al2O3/TiB2陶瓷刀具中TiB2的氧化产物,它能在刀具表面起到固体润滑剂的作用,进而降低前刀面的摩擦因数,减轻刀具的粘着磨损,提高刀具的耐磨性能,具有良好的减摩和抗磨作用。 相似文献
5.
6.
7.
8.
9.
对新型陶瓷刀具LD-1切削超高强度钢和淬硬钢时的切削性能作了试验研究,结果表明,LD-1刀具较其它Al2O3-TiC系陶瓷刀具更适于断续切削加工,因而具有较大的推广应用价值。 相似文献
10.
11.
12.
13.
M.A. El HakimM.D. Abad M.M. AbdelhameedM.A. Shalaby S.C. Veldhuis 《Tribology International》2011,44(10):1174-1181
This study presents an assessment of the performance of four cutting tool in the machining of medium hardened HSS: polycrystalline c-BN (c-BN+TiN), TiN coated polycrystalline c-BN (c-BN+TiN), ceramic mixed alumina (Al2O3+TiC), and coated tungsten carbide (TiN coated over a multilayer coating (TiC/TiCN/Al2O3)). The Al2O3+TiC and the coated carbide tools can outperform both types of c-BN at high cutting speeds. Raman and SEM mapping revealed an alumina tribo-layer that protects the surface of the Al2O3+TiC cutting tool. The high chemical and thermal stability of Al2O3 tribo-films protects the tool substrate because it prevents the heat generated at the tool/chip interface from entering the tool core. 相似文献
14.
Kani Tankus Gokhan Atay Hayo Brunken Yusuf Kaynak 《Machining Science and Technology》2020,24(1):96-111
AbstractThe present study focuses on the effects of cutting speed, feed rate and cutting tool material on the machining performance of carbon graphite material. Polycrystalline Diamond (PCD) cutting tools are used in machining experiments and its performance is compared with the tungsten carbide (WC) and Cubic Boron Nitride (CBN) tools. Machining performance criteria such as flank and nose wear and resulting surface topography and roughness of machined parts were studied. This study illustrates that feed rate and cutting tool material play a dominant role in the progressive wear of the cutting tool. The highest feed rate and cutting speed profoundly reduce the tool wear progression. The surface roughness and topography of specimens are remarkably influenced from the tool wear. Major differences are found in the wear mechanisms of PCD and WC and CBN cutting tools. 相似文献
15.
Xianhua Tian Wenzhen Qin Feng Gong Yintao Wang Helin Pan 《Machining Science and Technology》2017,21(2):279-290
A series of turning tests were conducted to investigate the cutting performance of ceramic tools in high-speed turning iron-based superalloys GH2132 (A286). Three kinds of ceramic tools, KY1540, CC650, and CC670 were used and their materials are Sialon, Al2O3–Ti(C,N), and Al2O3–SiCw, respectively. The cutting forces, cutting temperatures, tool wear morphologies, and tool failure mechanisms are discussed. The experimental results show that with the increase in cutting speed, the resultant cutting forces with KY1540 and CC670 tools show a tendency to increase first and then decrease while those for CC650 increase gradually. The cutting temperature increases monotonically with the increase in cutting speed. The optimum cutting speeds for KY1540 and CC650 when turning GH2132 are less than 100 m/min, while those for CC670 are between 100 and 200 m/min. Flank wear is the main reason that leads to tool failure of KY1540 and CC670 while notch wear is the main factor that leads to tool failure of CC650. Tool failure mechanisms of ceramic tools when machining GH2132 include adhesion, chipping, abrasion, and notching. Better surface roughness can be got using CC670 ceramic tools. 相似文献
16.
为研究陶瓷刀具切削钛合金的磨损机理,采用CC6060陶瓷刀片对TC4钛合金进行了干式车削试验。结果表明:陶瓷刀具干式切削TC4钛合金时,磨损形貌以前刀面月牙洼磨损、后刀面沟槽磨损和刀尖破损为主,磨损机理主要是粘结磨损和氧化磨损。随着切削速度的增加,刀具磨损加剧,刀具寿命降低。CC6060陶瓷刀片干式切削钛合金时的使用寿命很低,不适于干式切削钛合金。 相似文献
17.
Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools 总被引:3,自引:0,他引:3
Hard turning has been applied in many cases in producing bearings, gears, cams, shafts, axels, and other mechanical components since the early 1980s. Mixed ceramics (aluminum oxide plus TiC or TiCN) is one of the two cutting tool materials (apart from PCBN) widely used for finish machining of hardened steel (HRC 50–65) parts, especially under dry machining conditions and moderate cutting speed ranging from 90 to 120 m/min. This paper reports an extensive characterization of the surface roughness generated during hard turning (HT) operations performed with conventional and wiper ceramic tools at variable feed rate and its changes originated from tool wear. Moreover, it compares some predominant tool wear patterns produced on the two types of ceramic inserts and their influence on the alteration of surface profiles. After the hard turning tests, the relevant changes of surface profiles and surface roughness parameters were successively registered and measured by a stylus profilometer. In this investigation, a set of 2D surface roughness parameters, as well as profile and surface characteristics, such as the amplitude distribution functions, bearing area curves and symmetrical curves of geometrical contact obtained for the machined surface, were determined and analyzed. A novel aspect of this research is that the notch wear progress at the secondary cutting (trailing) edges was found to produce the substantial modifications of the individual irregularities, and constitute the altered surface profiles. Moreover, this research contributes to practical aspects of HT technology due to exploring the relations between the tool state at different times within the tool life and the relevant surface roughness characterization. 相似文献
18.
基于切削声音的刀具磨损状态识别研究 总被引:1,自引:0,他引:1
人工神经网络可以实现多特征信息的融合,将基于BP神经网络,建立各频率段能量百分比与刀具磨损的映射关系,进行刀具磨损状态识别的研究。最后在Labview环境下调用Matlab神经网络程序,初步实现了刀具磨损的识别。 相似文献
19.
Kubilay Aslantas Irfan Ucun 《The International Journal of Advanced Manufacturing Technology》2009,41(7-8):642-650
In this study, the machinability of austempered ductile iron (ADI) having a ferritic structure was examined. For this purpose, three types of ductile iron materials (as cast, ADI-250, ADI-375) and two different types of cutting tool materials (ceramics and cermet) were used. To emphasize the role of austempering process, ductile iron (DI) specimens are first austenitized in salt bath at 900°C for 120 minutes after which they are quenched in salt bath at 250°C (ADI-250) and 375°C (ADI-375) for 120 min. Machining tests were carried out at various cutting speeds (100–500 m/min) under the constant depth of cut and feed rate. The performance of both ceramic and cermet tools were evaluated based on the workpiece surface roughness and flank wear. Wear conditions of the cutting tools were characterized by scanning electron microscope. The results point out that the lower austempering temperature results in increasing of the cutting forces, while better surface roughness is obtained. Additionally, the results indicate that the tool wear occurs mainly on the flank face. However, higher cutting speed results in chipping formation in cermet cutting tool. 相似文献
20.
The conditions of operation of metal-cutting tools in various applications and of various standard dimensions are analyzed. Long-standing statistical observations at a number of industrial facilities have revealed the dominating mechanisms of wear and the main causes of failure of the tools have been established in response to the conditions of their operation and design features. A range of tools has been selected for comparative durability tests in industrial conditions. 相似文献