首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
以甲基乙烯基硅橡胶生胶为基胶,配合白炭黑等制得硅橡胶泡沫。采用密度测试仪、体视显微镜等表征硅橡胶泡沫的发泡效果。结果表明:当甲基乙烯基硅橡胶生胶中乙烯基质量分数为0.13%时,硅橡胶泡沫的发泡效果较好,表观密度为0.67 g/cm~3,发泡倍率为1.66倍,但拉伸及撕裂强度均偏低,分别为0.76 MPa、5.27 N/mm;若采用不同乙烯基质量分数的硅橡胶生胶复配,当乙烯基质量分数分别为0.03%及0.3%的两种生胶的质量比为72∶28时,硅橡胶泡沫的发泡效果较好,表观密度为0.66 g/cm~3、发泡倍率为1.66倍、拉伸强度0.67 MPa、撕裂强度为5.21 N/mm;两种生胶的质量比为72∶28时,复合硅橡胶的乙烯基质量分数仅为0.11%。  相似文献   

2.
为揭示偏高岭土基地聚合物的微观孔结构特征并探索介孔地聚合物制备和微孔结构调控途径,采用氮气吸附法研究了偏高岭土基地聚合物的吸附/脱附等温曲线和微观孔结构特征(包括总孔体积、比表面积、孔形状和孔径分布等),并讨论了水玻璃模数和水用量对地聚合物孔结构的影响。结果表明:偏高岭土基地聚合物吸附/脱附等温曲线为IV型,迟滞回线为H1和H3混合型;总孔体积为0.141 8~0.313 6 cm~3/g,比表面积为28.87~53.25 m~2/g,孔径为2~92 nm,其中孔径为2~50 nm的介孔分别占总孔体积和比表面积的97.82%和98.87%;地聚合物中的孔以两端开放的圆柱形孔、平行板狭缝孔为主,同时存在少量一端封闭的圆柱形孔、平行板狭缝孔或墨水瓶孔。调整水玻璃模数和水用量均可在一定范围内调控偏高岭土基地聚合物孔结构。水玻璃模数由1.2增至1.8时,其总孔体积由0.225 3 cm~3/g降至0.141 8 cm~3/g,最可几孔径在13.91~19.56 nm范围;水用量由15.5增至18.5时,其总孔体积从0.221 9 cm~3/g逐渐增至0.313 6 cm~3/g,孔径分布先由水用量为15.5的单峰分布变为双峰分布;水用量增至18.5时,孔径分布显著宽化,最可几孔径消失。水用量比水玻璃模数对偏高岭土基地聚合物孔结构具有更强的调控效应。  相似文献   

3.
以低成本的高岭土为主要原料,以ZnO作为添加剂,结合常压烧结技术,制备出低密度高强度的陶粒支撑剂。研究了ZnO的添加量、烧结温度对陶粒支撑剂性能的影响。采用树脂覆膜的方法进一步优化了陶粒支撑剂的性能,使其适用于更高要求的油气井。研究结果表明,当加入2%的ZnO并且烧结温度为1 300℃时,陶粒支撑剂的体积密度为1.42 g/cm~3,视密度为2.61 g/cm~3,35 MPa闭合压力下的破碎率为7.28%。当环氧树脂的用量为支撑剂的12%,固化剂的用量为环氧树脂的14%时,覆膜支撑剂的体积密度为1.32 g/cm~3,视密度为2.27 g/cm~3,69 MPa闭合压力下的破碎率仅为1.16%。  相似文献   

4.
为了资源化利用被废弃的钼尾矿,以陕南钼尾矿粉、石英粉、铝酸钙水泥为主要原料,双氧水为发泡剂,采用化学发泡-烧结法制备多孔陶瓷,主要研究了发泡剂添加量(外加,质量分数分别为1%、2%、3%、4%和5%)和烧结温度(分别为1 000、1 100℃)对多孔陶瓷显气孔率、体积密度、常温耐压强度和物相组成的影响。结果表明:1)随着双氧水添加量的增加,多孔陶瓷的显气孔率增大,体积密度和常温耐压强度减小。2)随着烧结温度的升高,多孔陶瓷的常温耐压强度明显增大。3)双氧水添加量为2%(w)、1 100℃煅烧制备的多孔陶瓷,其体积密度为0. 79 g·cm~(-3),显气孔率为69. 6%,耐压强度为0. 49 MPa;气孔大小一致,分布均匀,孔径300μm左右;主晶相为石英,次晶相为铝酸钙和氧化铝,并含少量钙长石。  相似文献   

5.
分别将发泡剂偶氮二甲酰胺(AC)和发泡促进剂ZnO预制成母料A和母料B,然后与低密度聚乙烯(PE–LD)混合挤出吹塑薄膜,并对比了掺混线性低密度聚乙烯(PE–LLD)后的变化。结果表明,母料A可以使薄膜发泡,且随着用量的增加薄膜的密度呈现先下降再升高的趋势,在母料A用量1.5份时发泡效果最佳;添加1份母料B后,薄膜泡孔均匀致密,表面光滑,母料A、母料B分别以1.5份和1份同时加入PE–LD中,得到吹塑薄膜的密度为0.399 g/cm~3,拉伸强度为18.3 MPa,直角撕裂强度90.7 kN/m;加入10份PE–LLD代替PE–LD时,对应发泡薄膜的密度为0.547 g/cm~3,拉伸强度为19.6 MPa,直角撕裂强度为90.1 kN/m。  相似文献   

6.
以长石为原料、SiC为发泡剂,经混料、压制成型、高温发泡等工序制备了长石发泡陶瓷,研究了发泡剂含量与发泡温度对长石发泡陶瓷的体积膨胀率、体积密度、气孔率和力学性能的影响。结果表明,在1160~1200℃的发泡温度范围内,随着发泡剂含量的增加,长石发泡陶瓷的体积膨胀率和气孔率都呈现先增大后减小的趋势,而体积密度和抗折强度则先减小后增大;在发泡剂含量为7%,发泡温度为1180℃时,可获得各项性能优异的发泡陶瓷,其体积膨胀率为258%、体积密度为0.38 g/cm~3、气孔率为78.86%、抗折强度可达3.3±0.26MPa。  相似文献   

7.
<正>在天然橡胶胶乳的硫磺硫化体系中,分别加入0份、2份、5份、10份、20份和30份CaSiO_3,制备半硬质发泡材料。CaSiO_3能够提高发泡材料的力学性能、热学性能和物理性能。CaSiO_3的最佳填充量是30份,此发泡材料的体积密度为1.2230 g/cm~3,复合发泡密度为0.3611 g/cm~3,抗压强度为588.10 kPa,在  相似文献   

8.
选择高挥发分煅前石油焦为原料,经煅烧得体积密度1.62 g/cm3煅后石油焦,控制粒径15 mm加入量50%,粒径1 mm加入量20%,煤沥青加入量7.6%,制得预焙阳极体积密度1.65 g/cm3;耐压强度58.10 MPa;电阻率47μΩ.m。  相似文献   

9.
采用矿渣等材料,以氢氧化钠做激发剂制备无机矿物聚合物。无机矿物聚合物制备环境,包括浆体稠度、温度和碱度对双氧水发泡性能影响显著。其中随着矿渣掺量的增加,发泡时间和体积吸水率先增加后减少,密度逐渐增加。随着水胶比的增加,发泡时间和体积吸水率逐渐减小,密度先增大后减小,当水胶比为0.55时,最快发泡时间为44 s。随着氢氧化钠掺量的增加,发泡时间和体积吸水率先增大后减小,密度先减小后增加,当氢氧化钠掺量为8%时,密度为479 kg/m3,体积吸水率为39.2%。  相似文献   

10.
研究了二氧化硅(白炭黑)比表面积对硅橡胶泡沫材料发泡性能的影响。结果表明:填充比表面积(300±25)m~2/g的二氧化硅时,硅橡胶发泡性能较好,硅橡胶泡沫材料表观密度可达0.17 g/cm~3;高、低比表面积二氧化硅配合使用,当比表面积(160±15)m~2/g的二氧化硅用量为5份时,硅橡胶发泡性能较好,拉伸强度为0.17 MPa,表观密度为0.20 g/cm~3,且表观密度亏损较少。  相似文献   

11.
采用自制超临界流体反应釜装置,以超临界CO_2作为物理发泡剂,进行聚丙烯(PP)材料的发泡试验研究。探讨了超临界CO_2发泡PP时的发泡温度、发泡压力和泄压速率对PP发泡材料的宏观性能及泡孔结构的影响。结果表明,发泡温度为135℃时,发泡材料的表观密度最小,为0.096 g/cm3;发泡压力为12 MPa时,发泡材料的表观密度最小,为0.075 g/cm~3,当发泡压力继续上升时,PP发泡材料的表观密度有所上升但泡孔直径开始下降;泄压速率为2 MPa/s时,发泡材料的表观密度最小,为0.196 g/cm~3,泡孔的平均直径最大。  相似文献   

12.
研究C/C预制体密度和反应温度对RMI法制备C/C-SiC复合材料密度、弯曲强度和微观结构的影响。实验通过化学气相渗透法(CVI)制备密度分别为1.2g/cm~3、1.4g/cm~3和1.6g/cm~3的低密度C/C多孔预制体,采用反应熔渗法(RMI)制备密度分别为2.21g/cm~3、2.18g/cm~3和1.82g/cm~3的C/C-SiC复合材料;将CVI制备的低密度C/C多孔预制体,采用RMI法在1500℃、1650℃和1800℃的反应温度下制备密度分别为1.79g/cm~3、2.18g/cm~3和2.41g/cm~3的C/C-SiC复合材料。结果表明:随着C/C预制体密度增加,C/C-SiC复合材料密度不断降低,弯曲强度呈先上升后下降的趋势,在C/C预制体密度为1.4g/cm~3时,材料的性能达到最优状态,材料的密度为2.18g/cm~3,弯曲强度为196.7MPa;随着RMI反应温度增加,C/C-SiC复合材料密度不断升高,材料弯曲强度呈先上升后下降的趋势,在反应温度为1650℃时,材料性能达到最优状态,材料密度为2.18g/cm~3,弯曲强度为196.7MPa。  相似文献   

13.
铝粉加入量对刚玉基复合材料性能的影响   总被引:1,自引:0,他引:1  
以电熔白刚玉砂为骨料(质量分数为60%,其中3~1mm的占45%,≤1mm的占15%),以电熔白刚玉粉(≤0.074mm和≤0.044mm)、Al2O3微粉及金属铝粉(≤0.088mm)为基质料(总质量分数为40%),改变基质料中金属铝粉的加入量(分别为0、2.5%、5%、7.5%和10%),外加3%的热固性酚醛树脂,混练均匀后,机压成标型砖,经(180±5)℃24h干燥后,于1500℃3h埋炭烧成,研究了金属铝粉加入量对烧后试样显气孔率、体积密度、烧后线变化率和常温耐压强度的影响。结果表明:加入适量金属铝粉能促进材料的烧结,加入5%的铝粉时,材料的体积密度较大,常温耐压强度最高,显气孔率最低;但加入量超过5%以后,又会影响材料的性能,因此适宜的铝粉加入量确定为5%。显微结构分析表明,加入的铝粉在高温埋炭条件下原位生成了Al(O,N,C)纤维增强相,使试样的强度提高,其高温抗折强度(1400℃)达到了58MPa。  相似文献   

14.
以偏高岭土和高炉渣为主要原料,PVA为稳泡剂,十二烷基苯磺酸钠为发泡剂,采用酸基地聚物凝胶成型制备钙长石质轻质耐火材料,研究了固含量、高炉渣替换量及烧结温度对轻质耐火材料合成及性能的影响。结果表明:适宜的高炉渣替换量和烧结温度对耐火材料的晶相形成及力学性能有较大影响,固含量为35wt%,其中高炉渣替换量为40.76wt%,烧结温度为1 100℃时可获得性能较好的钙长石轻质耐火材料,其气孔率为75.18%,体积密度为0.68 g/cm3,导热系数为0.18 W/m·K,抗折强度为4.95 MPa。  相似文献   

15.
AC发泡剂与增塑剂对PVC发泡材料性能的影响   总被引:1,自引:0,他引:1  
《塑料》2016,(1)
采用热失重分析仪对偶氮二甲酰胺(AC)及其与氧化锌(ZnO)复配体系的分解特性进行了研究,采用模压发泡法制备了PVC发泡材料,研究了AC/ZnO及邻苯二甲酸二辛酯(DOP)对PVC发泡材料力学性能及体积密度的影响。结果表明:AC/ZnO复配的最佳比例为1∶1,此时最高分解速率温度为173.97℃。添加AC/ZnO质量分数为6%时,发泡材料的力学性能良好,体积密度降至0.67 g/cm~3,在此基础上添加DOP质量分数为10%时,材料的体积密度降至0.44 g/cm~3,但力学性能损失较大。  相似文献   

16.
《塑料科技》2015,(7):56-61
以偏高岭土地聚物为基体、废弃聚苯乙烯泡沫(EPS)颗粒为保温轻骨料,研发了一种无机-有机复合建筑外墙外保温材料。以抗压强度、抗折强度为指标,探讨了EPS颗粒的最佳改性条件;然后以抗压强度及和易性等为主要参考指标,确定了该保温材料的最佳配比。结果表明:当复合改性剂乳胶粉乳液(固含量40%)/三乙醇胺的配比为1/1(体积比)、体积分数为3%(相对于EPS颗粒),且EPS颗粒表面偏高岭土包裹量为EPS颗粒质量的4倍时,改性EPS颗粒与地聚物胶凝材料具有良好的亲合性;另外,当3种外加剂(纤维素醚、木质纤维和乳胶粉)的质量分数(相对于偏高岭土)分别为0.5%、0.6%和3%,改性EPS颗粒的体积分数为80%,水灰比为0.66时,该保温材料的各项性能指标基本达到国标JG 158—2004的要求,其干密度、抗压强度、吸水量、软化系数和导热系数分别为314 kg/m3、0.24 MPa、694 g/m2、0.875、0.065 W/(m K),材料难燃性达到B1级。  相似文献   

17.
尖晶石对刚玉-尖晶石浇注料性能的影响   总被引:3,自引:2,他引:1  
本文以板状刚玉、烧结尖晶石、活性α-Al2O3微粉和纯铝酸钙水泥等为主要原料制备刚玉-尖晶石浇注料,研究了尖晶石的加入量及引入形式对试样性能的影响.研究结果表明:当烧结尖晶石颗粒为15%、细粉加入量为5%时,试样具有较好的性能指标,1600 ℃×3 h热处理后,试样的常温抗折强度和耐压强度分别达到22 MPa、110 MPa,体积密度和显气孔率分别为2.98 g/cm3和19%.  相似文献   

18.
在采用偏高岭土碱激发制备地质聚合物的基础上,优化配合比,为制备出早期强度较高的地质聚合物。以NaOH和水玻璃为复合碱激发剂,研究水玻璃模数、碱当量、液固比以及养护条件对偏高岭土地质聚合物抗压强度的影响。试验结果表明,偏高岭土130g、水玻璃模数1.0、碱当量11%、液固比0.31、标准养护时,制备的偏高岭土地质聚合物3d抗压强度最高,达到53.7MPa。另外,在初始液固比为0.31时,不同模数下的地质聚合物强度都达到最佳。本文为偏高岭土地质聚合物的制备提供了有效的借鉴。  相似文献   

19.
添加剂和结合剂对氧化锆陶瓷性能的影响   总被引:1,自引:1,他引:0  
薛娜  马林  吕戌生 《硅酸盐通报》2009,28(3):572-574
以斜锫石为主要原料,研究了氧化钙复合添加剂和结合剂对氧化锆陶瓷性能的影响.对在1630℃烧后的试样进行了性能测试.结果表明:当碳酸钙和氧化钙加入量(质量百分含量,下同)分别为5.2%和2.29%时,试样的综合性能较好,体积密度为3.87 g/cm3;显气孔率为32.5%;抗折强度为34.7 MPa;耐压强度为186 MPa.  相似文献   

20.
为制备低成本兼具高孔隙率与高压缩强度的发泡陶瓷,以粉煤灰、锂渣、长石、滑石和碳化硅为原料,经1 180、1 200、1 220、1 240℃分别保温10、20、40、60 min烧结制备发泡陶瓷试样。主要研究了锂渣的掺量(质量分数分别为0、10%、20%、30%)对试样物相组成、显微结构、孔隙率及压缩强度的影响。结果表明:1)随锂渣掺量的增加,发泡陶瓷的孔隙率增加,体积密度降低,压缩强度波动;2)锂渣中丰富的钙、硫成分,可发挥助熔剂和发泡剂作用,降低烧结温度,提高发泡陶瓷的孔隙率,改善气孔圆整度,提高压缩强度;3)当锂渣掺量为20%(w)时,经1 220℃保温20~40 min烧结所得发泡陶瓷的体积密度为0.32~0.40 g·cm-3,孔隙率为84.4%~87.6%,压缩强度为1.51~2.35 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号