首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 40 毫秒
1.
基于Hilbert-Huang变换的振动信号特征提取   总被引:1,自引:0,他引:1  
采用Hilbert-Huang变换,提取高压齿轮泵泵壳振动信号故障特征.该方法先对信号进行EMD分析和Hilbert变换,再提取信号Hilbert谱及谱熵.Hilbert谱刻画了信号的能量随时间和频率的变化规律,而谱熵刻画了信号能量分布的复杂性.分析结果表明,提取的特征有效地刻画了故障信号,为故障模式的识别奠定了基础.  相似文献   

2.
强噪声背景下的齿轮箱振动信号故障特征提取困难,变分模态分解(VMD)和奇异值分解(SVD)都是有效的降噪方法,将两种方法结合起来有更好的降噪效果.但是若噪声非常强,甚至淹没了部分有用信息,传统的VMD-SVD联合降噪就会将部分有用信息与噪声一起滤掉.在传统的VMD-SVD联合降噪的基础上,提出了改进VMD-SVD的降噪...  相似文献   

3.
针对齿轮泵故障成因复杂、模糊性强的特点,结合小波包分解与K-L变换,提出一种适用于支持向量机故障诊断的特征提取方法。通过小波包对样本故障振动信号进行分解得到特征向量,而后利用K-L变换处理得到新的特征向量集,达到降维去噪的目的。将处理后的特征向量集用于支持向量机的模型训练,分析结果表明:该方法能够有效提高故障模式识别准确率和识别效率。  相似文献   

4.
提出了一种无需控制的被动式电磁阻尼器.其采用直流电工作.用于实验转子系统并取得了良好的减振效果。该阻尼器结构简单.性能可靠.有推广应用前景。  相似文献   

5.
针对一维振动信号表达故障特征信息不全面及转子故障信噪比低的问题,提出一种基于多尺度加权融合特征学习的转子故障诊断方法。首先,对时域振动信号的幅值进行标准化处理,利用对称点模式(SDP)原理将多传感器振动信息融合为二维SDP图像,通过选取适当的时间滞后系数和角增益,突出不同故障下SDP图像的特征;其次,构建了一种多尺度加权卷积神经网络(MSW-CNN)模型,利用3个不同的感受野分别提取图像特征,通过对多通道图像特征进行加权融合提高了模型的分类精度;最后,利用MSW-CNN模型对6种故障状态的SDP图像进行特征提取并分类。实验结果表明,与其他3种方法相比,所提方法的转子故障诊断精度更高,达到99.31%,在噪声干扰下的诊断精度为96.23%,验证了所提方法的有效性。  相似文献   

6.
针对轴承微弱故障时冲击信号含有大量噪声且难以提取故障特征频率问题,提出了一种基于奇异值分解(SVD)和变分模态分解(VMD)的轴承故障特征提取方法.该方法先对原始信号进行SVD去噪;再对去噪信号进行VMD分解,得到各个本征模态函数(IMF),根据最大中心频率原则和各个本征模态与去噪信号的相关系数差值确定分解个数,通过加...  相似文献   

7.
针对采用电液主动控制挤压油膜阻尼器控制有定心弹簧的转子系统振动问题进行了理论分析与数字仿真研究。提出了一种新型的动静压挤压油膜阻尼器HSFD。在已知无轴向回油槽深油腔HSFD油膜力近似解的基础上,以小孔节流为例,对其油膜力的特性进行了分析,进行了稳态特性和瞬态特性的讨论,研究了HSFD对转子系统的控制作用。仿真表明,HSFD明显改善了SFD系统中经常出现的双稳态现象,并且具有很好的减振效果。  相似文献   

8.
针对数学形态学滤除白噪声能力不足的问题,提出了奇异值分解( SVD)、局域均值分解( LMD)和数学形态学相结合的特征提取方法。将信号进行奇异值分解,对分解后的主要成分取均值,然后进行局域均值分解,选取主要分量求和重构,再用形态学差值滤波器提取故障信号的频率特征。通过数值仿真试验和齿轮局部故障模拟实验,结果表明:该方法能够清晰地提取出故障信号的频率特征,并与奇异值分解形态滤波法相比较,证明了该方法的有效性。  相似文献   

9.
舒思材  韩东 《机床与液压》2016,44(11):176-180
为了更有效地提取液压泵振动信号的特征,提出基于改进高频谐波加入-经验模态分解(High Frequency Harmonic Added-Empirical Mode Decomposition,HFHA-EMD)和双相关系数准则的液压泵特征提取方法。该方法首先采用幅值更大的高频谐波加入到振动信号进行EMD分解,得到一组本征模函数(Intrinsic Mode Function,IMF);然后计算各IMF分别与高频谐波和振动信号的相关系数,选取符合条件的IMF重构振动信号;再对重构信号进行包络解调,得到包络谱;最后,以包络谱各频带能量占总能量的百分比构造液压泵振动信号的特征向量,结合支持向量机判断液压泵的运行状态.实验结果表明,改进HFHA-EMD有效抑制了模态混叠现象;同时,双相关系数准则准确去除了与故障无关而保留了与故障相关的IMF,为液压泵特征提取打下坚实的基础。  相似文献   

10.
针对轴承早期故障信号微弱、故障特征难以提取的问题,提出一种将完备集合经验模态分解(CEEMDAN)与快速独立分量分析(FastICA)相结合的故障特征提取方法.该方法首先利用CEEMDAN将轴承故障信号进行分解,得到一系列模态分量(IMF);然后依据峭度准则选取相应分量进行重构,引入虚拟噪声通道;最后利用FastICA...  相似文献   

11.
针对升速过程中转子故障诊断所面临的复杂分析问题,在传统轴心轨迹的基础上提出瞬态倍频轴心轨迹的分析方法。利用Vold-Kalman阶比跟踪方法提取出各故障特征频率;然后将特征频率进行重构,合成随转速变化的瞬态倍频轴心轨迹;利用几何矩方法提取瞬态倍频轴心轨迹的故障特征,并将几何矩特征集进行MDS降维。经实验验证,该方法在转子升速过程中的故障特征提取及诊断方面取得了良好的效果。  相似文献   

12.
微弱信号特征提取对于主轴系统早期故障诊断有着重要意义。从抑制噪声和利用噪声达到提高信噪比的角度出发,基于信号处理领域的研究成果,列举了可用于主轴系统微弱信号特征的提取方法。这些方法包括抑制噪声提高信噪比的信号处理方法和利用噪声增强微弱信号的方法,抑制噪声提高信噪比的信号处理方法有谱峭度、小波变换、经验模式分解、循环平稳理论、盲源分离、流形学习等;利用噪声增强微弱信号的方法有随机共振和总体平均经验模式分解。为主轴故障诊断研究提供了参考。  相似文献   

13.
提出一种基于虚拟仪器的表面肌电信号的特征提取算法。该方法利用虚拟仪器丰富的函数功能,针对肌电信号的非平稳性特征,应用积分阈值法首先去除静息电位,保留最有价值的信号部分,然后利用小波包变换的方法对肌电信号进行小波包分解,根据其投影到不同频段上小波包系数能量的不同,利用能量较大的几组系数重构肌电信号。实验结果表明:该方法能有效地去除静息电位及噪声信号,且保留了肌电信号的细节信息,为肌电信号的模式识别创造了良好的条件。该研究依据虚拟仪器平台,为创建表面肌电信号实时控制机械臂系统提供了研究基础,具有潜在的工程应用价值。  相似文献   

14.
立铣加工过程中的颤振会严重影响工件表面质量和材料去除率,加剧刀具磨损和恶化工作环境。虽然大部分颤振监测系统可以监测到颤振发生,但颤振发生时已经对工件和刀具产生了严重的损伤,因此,需要提前监测到颤振特征。由于加工过程的非线性导致振动信号频率成分复杂,单一的时频分析方法难于得到可靠的颤振特征。通过小波包分解确定颤振发生频段并重构该频段信号,通过颤振发生频段的倒频谱辨识稳定、过渡和颤振状态。研究结果表明,该方法可以有效识别立铣加工过程的稳定、过渡和颤振状态。  相似文献   

15.
基于多层降噪处理的轴承故障特征提取方法   总被引:1,自引:0,他引:1  
针对滚动轴承振动信号的故障信息难以准确获取问题,提出一种新的基于多层降噪处理的轴承故障特征提取方法.所提方法首先依据小波包变换原理处理原始轴承信号,消除噪声干扰;变换后的振动信号用经验模态分解方法处理可得若干个IMF分量,计算所得分量与变换所得信号间的互相关系数,并依据相关系数准则筛选有用分量完成振动信号的重构;再通过...  相似文献   

16.
唐静  王二化  朱俊  李栋 《机床与液压》2020,48(20):161-166
为了提取齿轮裂纹故障的特征参数并识别不同裂纹深度齿轮的类型,以单级齿轮箱中的圆柱齿轮为实验对象,采集3种不同裂纹深度齿轮的振动信号。对采集到的信号进行时频域分析和EEMD分解,分别提取时域特征参数和EEMD能量特征参数,分析和构造齿轮裂纹故障特征向量,选用基于径向基核函数的支持向量机分类方法进行不同裂纹深度齿轮的识别。结果表明:结合时域特征参数和EEMD能量特征参数构造的齿轮裂纹故障特征向量能准确识别不同裂纹深度齿轮的类型。  相似文献   

17.
翟欢乐  黄磊 《机床与液压》2022,50(11):190-195
涡轴发动机的工况决定它容易在转子过渡态因瞬间失衡而出现碰摩现象。碰摩故障会引起部分统计特征参数发生突变现象。基于三叉树检测算法,提出转子局部碰摩故障监测方法。基于某涡轴发动机转子振动倍频幅值包络线、试车转速曲线,分别仿真涡轮机匣测点发生局部碰摩故障与正常工作状态下的振动信号。对振动信号进行频谱分析,并提取振动信号的峭度指标、裕度指标、总量,以对转子碰摩故障进行甄别。结果表明:转子基频容易凸显故障特征;基于统计特征的碰摩监测方法能够较好地识别出转子碰摩故障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号