首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N-fertilization dynamics and agronomic practices on a Vertisol in central Mexico were evaluated under irrigated conditions: (1) wheat-maize rotation with conventional tillage (CT) and burning of residues (W-M/CT/B, regional control); (2) wheat-beans rotation with CT and incorporation of residues into the soil (W-P/CT/I); (3) wheat-maize rotation with CT and incorporation of residues into the soil (W-M/CT/I); (4) maize-beans rotation bi-annual with CT and incorporation of residues into the soil (M-P/CT/Bi); and (5) wheat-maize, no tillage (NT) and residues left on the soil surface as mulch (W-M/NT/S). 15N and acetylene inhibition techniques were used to estimate N fertilizer efficiency and losses (N2 + N2O). Treatments received 240, 60, and 300 kg N ha−1 for spring maize, beans and winter wheat, as ammonium sulphate enriched with 5.468% atoms 15N excess. In the spring summer cycle, the fertilizer N recovery ranged from 27% for W-M/NT/S to 68% for M-P/CT/Bi. From the total N-fertilizer applied, only 3 to 9% remained in soil after harvest (W-M/NT/S and W-M/CT/I being the respective extremes). Unaccounted N-fertilizer ranged between 27 and 69%, the highest losses corresponding to W-M/NT/S treatment. Fertilizer N recovery in wheat varied from 19 to 37% (W-M/NT/S–W-M/CT/B). N-fertilizer remaining in soil was 14 to 24% (W-M/NT/S – W-M/CT/I). N2 and N2O emissions were higher in the no tillage system. Emissions ranged from 3 to 28 kg N ha−1 for W-P/CT/I and W-M/NT/S, respectively. The best treatments were those in which residues were incorporated resulting in N immobilization in top soil (0–15 cm), small N gas losses, and higher soil organic matter, these treatments were W-P/CT/I, W-M/CT/I.  相似文献   

2.
Management practices may influence dryland soil N cycling. We evaluated the effects of tillage, crop rotation, and cultural practice on dryland crop biomass (stems and leaves) N, surface residue N, and soil N fractions at the 0?C20?cm depth in a Williams loam from 2004 to 2008 in eastern Montana, USA. Treatments were two tillage practices (no-tillage [NT] and conventional tillage [CT]), two crop rotations (continuous spring wheat [Triticum aestivum L.] [CW] and spring wheat-barley [Hordeum vulgaris L.] hay-corn [Zea mays L.]-pea [Pisum sativum L.] [W-B-C-P]), and two cultural practices (regular [conventional seed rates and plant spacing, conventional planting date, broadcast N fertilization, and reduced stubble height] and ecological [variable seed rates and plant spacing, delayed planting, banded N fertilization, and increased stubble height]). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4?CN, and NO3?CN. Crop biomass N was 30?% greater in W-B-C-P than in CW in 2005. Surface residue N was 30?C34?% greater in NT with the regular and ecological practices than in CT with the regular practice. The STN, PON, and MBN at 10?C20 and 0?C20?cm were 5?C41?% greater in NT or CW with the regular practice than in CT or CW with the ecological practice. The PNM at 5?C10?cm was 22?% greater in the regular than in the ecological practice. The NH4?CN and NO3?CN contents at 10?C20 and 0?C20?cm were greater in CT with W-B-C-P and the regular practice than with most other treatments in 2007. Surface residue and soil N fractions, except PNM and NO3?CN, declined from autumn 2007 to spring 2008. In 2008, NT with W-B-C-P and the regular practice gained 400?kg?N?ha?1 compared with a loss of 221?kg?N?ha?1 to a gain of 219?kg?N?ha?1 in other treatments. No-tillage with the regular cultural practice increased surface residue and soil N storage but conventional tillage with diversified crop rotation and the regular practice increased soil N availability. Because of continuous N mineralization, surface residue and soil N storage decreased without influencing N availability from autumn to the following spring.  相似文献   

3.
Efficient fertilizer use is a prerequisite for achieving optimum crop yield while avoiding environmental contamination. Cereal response to nitrogen (N), sulfur (S), and phosphorus (P) were determined for 6 years under differing tillage [conventional-till (CT) vs. no-till (NT)] and intensity of cropping (cereal/fallow vs. cereal/cereal). Semidwarf white winter wheat (Triticum aestivum L.) alternated yearly with either fallow or spring cereal [barley (Hordeum vulgare L.) or spring wheat] on a Typic Haploxeroll soil in a 415 mm rainfall zone. Fertilizer treatments were no fertilizer (None), N only (N), N plus S (NS), and N plus S plus P (NSP). Average application rate, when applied, was 109 kg N, 18 kg S, and 11 kg P ha–1. Average cereal yield without fertilizer was 1.82 t ha–1. Nitrogen increased grain yield in 6 of 6, S in 4 of 6, and P in 3 of 6 years, with P and S response significant the remaining years at the 10% probability level. Average yield increases were 1.11 t ha–1 for N, 0.93 t ha–1 for S, and 0.47 t ha–1 for P. The NT/CT yield ratio was 0.60, 0.75, 0.93, and 0.95 with None, N, NS, and NSP addition, respectively, indicating that N and S deficiency were more severe in no-till. Limited increase in the NT/CT ratio with P addition indicated that P deficiency was less affected by tillage. Winter wheat always yielded less under NT than CT regardless of fertility, whereas spring cereals reached equality when fertilized with NSP. Annually-cropped wheat yielded 52, 67, 89, and 90% of wheat after fallow with None, N, NS, and NSP, respectively. Thus N and S, but not P, deficiency was more intense with increased frequency of cropping. Adequate fertility was a prime prerequisite for efficient yield in all systems.  相似文献   

4.
Ammonium thiosulphate solution, (ATS, (NH4)2S2O3, 12% NH4-N and 26% S), is a nitrogen-sulphur fertiliser which can also inhibit nitrification, inhibit area hydrolysis and also solubilize micronutrients in alkaline soils. A three year field study was conducted in northeastern Italy to compare the growth, yield, and nutrient uptake of irrigated maize (Zea mays L.) fertilised with 250 kg N ha-1 urea-ammonium nitrate solution (UAN, 30-0-0) or UAN plus ATS. Dry matter (DM) yield, sulphur (S) and nitrogen (N) uptake were measured at several growth stages. Grain was measured and analyzed at maturity. Maize grain yield and N uptake were increased respectively 30.6% and 42.2% in the first year by adding ATS to UAN. Adding 10% by weight ATS to UAN (22.8 kg S ha-1) increased grain yields by 1.9, 1.7 and 1.6t ha-1 for the three years of the study. To distinguish whether the response was due to S or other ATS attributes, ATS was compared to an equivalent amount of S from single superphosphate (SSP). Plots fertilised with ATS gave grain yields 0.5 and 1.2 t ha-1 greater than plots fertilised with equal rates of S from SSP in the last two years of the study. This added yield from ATS over SSP may have been due to beneficial effects of ATS on N or micronutrient availability or to the split application of the S from ATS.  相似文献   

5.
Crop yield and N uptake in semi-arid environments are typically limited by available water and/or N. Since remobilization of shoot N is a major source of grain N, an understanding of how it is influenced by soil N and water supply, and tillage, is required. In 2003, 2005 and 2006, we determined the influence of N supply (0 or 60 kg fertilizer N ha−1) and tillage [no tillage (NT) or conventional tillage (CT)] on N translocation and N use efficiency of wheat (Triticum aestivum L.) at Scott, Saskatchewan, Canada. Wheat production and N use, and their response to N fertilizer or tillage, were largely influenced by water availability. Wheat N uptake and remobilization were strongly correlated with normalized rainfall in May and June (r = 0.985 and 0.935, respectively, both significant at the P = 0.01 level). In a moisture-stressed year (2003), grain yield was higher under NT than CT, and fertilizer N was ineffective due to low N demand. Nitrogen application increased shoot dry matter (DM), and N uptake and remobilization only in 2006, a year with near-average precipitation. In a wet and cool year (2005), wheat showed no response to tillage or fertilizer N as available soil N was high. Root DM and N content varied slightly only with year or treatment. When N uptake at heading was substantially greater than 100 kg ha−1, N loss occurred during plant senescence, and it was higher with N fertilization: in 2005 and 2006, N-fertilized wheat lost 33–35 kg N ha−1. Nitrogen use efficiency was: (1) higher under NT than CT, due to higher N utilization efficiency, (2) higher with no added N due to higher uptake and utilization efficiencies, and (3) low when water availability was low or excessive. Tillage system had little effect on the uptake, remobilization or loss of N. Fertilizer N application in a year with average rainfall increased wheat production, N accumulation and remobilization, and N loss during senescence.  相似文献   

6.
A field study was initiated to investigate the influence of application time on the disposition of 100 kg N ha–1 applied as15N-labelled NaNO3 and (NH4)2SO4 to a silty clay soil (a ustic eutropept) under sugarcane (Saccharum hybrid sp.) in Mauritius. The results showed that the vertical and lateral distribution of residual fertilizer N remaining in the soil 2 years after fertilization was not influenced by the chemical nature of N used nor by the time of application. On account of rapid biological immobilization more than 50% of the residual N in the soil remained in the surface 15-cm layer and less than 30% of fertilizer N had moved laterally more than 30 cm away from the zone of fertilization. There was however more residual fertilizer N in the soil when the N was applied in September (23 kg N ha–1) than in December (16 kg N ha–1) because fertilizer N applied during the active sugarcane growth in December was used more efficiently than similar applications in September when growth was slow. The present study provides further evidence to substantiate that N leaching is not of significant concern in soils located in a tropical environment similar to that of Mauritius.  相似文献   

7.
Nitrogen losses from irrigated wheat (cv. Matong) grown on a heavy clay in the Goulburn-Murray Irrigation Region following foliar applications of urea at heading were investigated. Ammonia (NH3) volatilization was determined by a micrometeorological method and total nitrogen (N) loss was determined by a15N balance technique. The effects of the foliar application on grain N concentration and grain yield were determined also.Little nitrogen was lost by NH3 volatilization following the foliar application. The rate of NH3 loss increased briefly from <11 g N ha–1 hr–1 to >19 g N ha–1 hr–1 following rainfalls of 3 and 2 mm which washed 34% of the applied N from the plant onto the soil and increased the pH of the surface soil. The pH effect was short lived and total NH3 loss amounted to only 2.13 kg N ha–1 or 4.3% of the applied N.The15N balance study also showed that little N was lost from the plant-soil system until rain had washed the fertilizer from the plant onto the soil. In the period 152 to 206 DAS, the soil component of the applied N decreased from 34% to 9%. This fraction then increased slightly to 12% of the applied N at harvest. At that time, 69% of the applied N was recovered in the plants indicating that 19% of the applied N had been lost from the plant-soil system. As there was no evidence for leaching of N, the difference between total N loss as measured by15N balance (19%) and NH3 loss (4%) is considered to be loss by denitrification (15%).The fertilizer N assimilated by the plant was efficiently remobilised from the leaves and stems to the head; 78% of the fertilizer N assimilated by the plant tops had been translocated to the head by the time of harvest. Grain N concentration responded to the foliar N application. The fitted response function had significant linear (P = 0.004) and quadratic (P = 0.10) trends to N rate, whereas there was no significant effect on grain yield.  相似文献   

8.
Urea-ammonium nitrate (UAN) solution fertilizers are subject to N loss through ammonia (NH3) volatilization. This loss may be reduced by manipulation of the proportion of urea and by use of additives to reduce urea hydrolysis or increase fertilizer solution acidity. This research was design to study the effect of urea proportion in UAN solutions, added ammonium thiosulfate (ATS), and aquechem liquor (an industry by-product) on NH3 loss from N solutions surface-applied to a range of agricultural soils.NH3 volatilization from urea (U), ammonium nitrate (AN), and UAN solutions surface-applied on six eastern Canadian soils was investigated. Ammonia loss from urea solutions ranged from 23 to 55% of the applied N. Increased AN-N in UAN solutions caused a reduction of NH3 loss greater than the reduction in urea. Less volatilization was observed with N solutions of higher acidity. This effect was more pronounced on a sandy soil than on clay soil.When ATS was added to UAN solution, a further reduction of NH3 losses was observed. This reduction ranged from 12 to 23.5% in Dalhousie clay and Ste. Sophie sand soils, respectively. Addition of aquachem liquor (AqL) to the UAN solution did not consistently reduce NH3 loss.Supported by a grant from the Natural Sciences and Engineering Research Council of Canada, and Nitrochem Inc., Canada.  相似文献   

9.
Long-term use of soil, crop residue and fertilizer management practices may affect some soil properties, but the magnitude of change depends on soil type and climatic conditions. Two field experiments with barley, wheat, or canola in a rotation on Gray Luvisol (Typic Cryoboralf) loam at Breton and Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, were conducted to determine the effects of 19 or 27 years (from 1980 to 1998 or 2006 growing seasons) of tillage (zero tillage [ZT] and conventional tillage [CT]), straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha?1 in SRet, and 0 kg N ha?1 in SRem plots) on pH, extractable P, ammonium-N and nitrate–N in the 0–7.5, 7.5–15, 15–30 and 30–40 cm or 0–15, 15–30, 30–60, 60–90 and 90–120 cm soil layers. The effects of tillage, crop residue management and N fertilization on these chemical properties were usually similar for both contrasting soil types. There was no effect of tillage and residue management on soil pH, but application of N fertilizer reduced pH significantly (by up to 0.5 units) in the top 15 cm soil layers. Extractable P in the 0–15 cm soil layer was higher or tended to be higher under ZT than CT, or with SRet than SRem in many cases, but it decreased significantly with N application (by 18.5 kg P ha?1 in Gray Luvisol soil and 20.5 kg P ha?1 in Black Chernozem soil in 2007). Residual nitrate–N (though quite low in the Gray Luvisol soil in 1998) increased with application of N (by 17.8 kg N ha?1 in the 0–120 cm layer in Gray Luvisol soil and 23.8 kg N ha?1 in 0–90 cm layer in Black Chernozem soil in 2007) and also indicated some downward movement in the soil profile up to 90 cm depth. There was generally no effect of any treatment on ammonium-N in soil. In conclusion, elimination of tillage and retention of straw increased but N fertilization decreased extractable P in the surface soil. Application of N fertilizer reduced pH in the surface soil, and showed accumulation and downward leaching of nitrate–N in the soil profile.  相似文献   

10.
Grain yield, nitrogen (N) assimilation, ammonia (NH3) volatilization, denitrification and fertilizer N distribution were examined in three commercially grown cereal crops; two were sown into conventionally tilled fields, while the third was direct drilled into an untilled field. The crops were top dressed with urea at establishment, tillering or ear initiation. Crop yield and N assimilation were measured in 16 m by 2.5 m plots receiving 0, 35, 70, 105, 140 or 175 kg N ha–1. A mass balance micrometeorological technique was used to measure NH3 volatilization, and other fertilizer N transformations and transfers were studied using15N labelled urea in microplots.On the conventionally tilled sites application of urea increased the grain yield of wheat from 3.9 to 5.5 t ha–1, when averaged over the five application rates, three application times and two sites. There were no site or application time effects. However, on the direct drilled site, time of application had a significant effect on grain yield. When urea was applied at establishment, grain yield was not significantly increased and the mean yield (2.81 t ha–1) was less than that obtained from treatments fertilized at tillering or ear initiation (4.09 and 4.0 t ha–1, respectively). Much of the variation in grain yield at the no-till site could be ascribed to differences in NH3 volatilization. At the no-till site, NH3 losses were equivalent to 24, 12 and 1% of the N applied at establishment, tillering and ear initiation, respectively. Negligible volatilization of NH3 occurred at the other sites. The surface soil at the no-till site had the highest urease activity and the soil was covered with alkaline ash resulting from stubble burning.Plant recovery of fertilizer N did not vary with application time on conventionally tilled sites (mean 62%). However, plant recovery of15N applied to the no-till site at establishment (35% of the applied N) was significantly less than that from plots where the application was delayed (45% at tillering and 55% at ear initiation, respectively). Leaching of N to below 300 mm depth was minimal (0 to 5% of the applied N). The calculated denitrification losses ranged from 1% to 14% of the applied N.The results show that the relative importance of NH3 volatilization, leaching and denitrification varied with site and fertilization time. The importance of the various N loss mechanisms needs to be taken into account when N fertilization strategies are being developed.  相似文献   

11.
Accounting of N inputs and outputs and N retention in the soil provides N balance that measures agroecosystem performance and environmental sustainability. Because of the complexity of measurements of some N inputs and outputs, studies on N balance in long-term experiments are scanty. We examined the effect of 8 years of tillage, crop rotation, and cultural practice on N balance based on N inputs and outputs and soil N sequestration rate under dryland cropping systems in the northern Great Plains, USA. Tillage systems were no-tillage (NT) and conventional tillage (CT) and crop rotations were continuous spring wheat (Triticum aestivum L.) (CW), spring wheat–pea (Pisum sativum L.) (W–P), spring wheat–barley (Hordeum vulgaris L.) hay–pea (W–B–P), and spring wheat–barley hay–corn (Zea mays L.)–pea (W–B–C–P). Cultural practices were traditional (conventional seed rates and plant spacing, conventional planting date, broadcast N fertilization, and reduced stubble height) and improved (variable seed rates and plant spacing, delayed planting, banded N fertilization, and increased stubble height). Total N input due to N fertilization, pea N fixation, atmospheric N deposition, crop seed N, and nonsymbiotic N fixation was greater with W–B–C–P than CW, regardless of tillage and cultural practices. Total N output due to aboveground biomass N removal and N losses due to denitrification, volatilization, plant senescence, N leaching, gaseous N (NOx) emissions, and surface runoff were not different among treatments. Nitrogen sequestration rate at 0–20 cm from 2004 to 2011 varied from 29 kg N ha?1 year?1 in CT with W–P to 89 kg N ha?1 year?1 in NT with W–P. Nitrogen balance varied from ? 39 kg N ha?1 year?1 in NT with CW and the improved practice to 41 kg N ha?1 year?1 in CT with W–P and the traditional practice. Because of legume N fixation and increased soil N sequestration rate, diversified crop rotations reduced external N inputs and increased aboveground biomass N removal, N flow, and N balance compared with monocropping, especially in the CT system. As a result, diversified legume–nonlegume crop rotation not only reduced the cost of N fertilization by reducing N fertilization rate, but also can be productive by increasing N uptake and N surplus and environmentally sustainable by reducing N losses compared with nonlegume monocropping, regardless of cultural practices in dryland agroecosystems.  相似文献   

12.
Soil, crop and fertilizer management practices may affect the amount and quality of organic C and N in soil. A long-term field experiment (growing barley, wheat, or canola) was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 (1980 to 1998) or 27 years (1980 to 2006) of tillage (zero tillage [ZT] and conventional tillage [CT]), straw management (straw removed [SRem]and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha−1 in SRet and 0 kg N ha−1 in SRem plots) on total organic C (TOC) and N (TON), and light fraction organic C (LFOC) and N (LFON) in the 0–7.5 and 7.5–15 cm or 0–5, 5–10 and 10–15 cm soil layers. The mass of TOC and TON in soil was usually higher in SRet than in SRem treatment (by 3.44 Mg C ha−1 for TOC and 0.248 Mg N ha−1 for TON after 27 years), but there was little effect of tillage and N fertilization on these parameters. The mass of LFOC and LFON in soil tended to increase with SRet (by 285 kg C ha−1 for LFOC and 12.6 kg N ha−1 for LFON with annual rate of 100 kg N ha−1 for 27 years), increased with N fertilizer application (by 517 kg C ha−1 for LFOC and 36.0 kg N ha−1 for LFON after 27 years), but was usually higher under CT than ZT (by 451 kg C ha−1 for LFOC and 25.3 kg N ha−1 for LFON after 27 years). Correlations between soil organic C or N fractions were highly significant in most cases. Linear regressions between crop residue C input and soil organic C or N were significant in most cases. The effects of tillage, straw management and N fertilizer on soil were more pronounced for LFOC and LFON than TOC and TON, and also in the surface layers than in the deeper layers. Tillage and straw management had little or no effect on C:N ratios, but the C:N ratios in light organic fractions significantly decreased with increasing N rate (from 20.06 at zero-N to 18.91 at 100 kg N ha−1). Compared to the 1979 results, in treatments that did not receive N fertilizer (CTSRem0, CTSRet0, ZTSRem0 and ZTSRet0), CTSRem0 resulted in a net decrease in TOC concentration (by 1.9 g C kg−1) in the 0–15 cm soil layer in 2007 (after 27 years), with little or no change in the CTSRet0 and ZTSRem0 treatments, while there was a net increase in TOC concentration (by 1.2 g C kg−1) in the ZTSRet0 treatment. Straw retention and N fertilizer application at 50 and 100 kg N ha−1 rates showed a net positive effect on TOC concentration under both ZT (ZTSRet50 by 2.3 g C kg−1 and ZTSRet100 by 3.1 g C kg−1) and CT (CTSRet50 by 3.5 g C kg−1 and CTSRet100 by 1.6 g C kg−1) treatments in 2007 compared to 1979 data. In conclusion, the findings suggest that retention of straw, application of N fertilizer and elimination of tillage would improve soil quality, and this might increase the potential for N supplying power of the soil and sustainability of crop productivity.  相似文献   

13.
This paper reports the results of experiments to determine whether ammonia (NH3) loss can be reduced and nitrogen (N) use efficiency improved by using two relatively new commercial urea formulations rather than granular urea and urea ammonium nitrate. Four nitrogen treatments were applied at a rate of 40 kg N ha?1: granular urea, ‘Green Urea? 14’ [containing 45.8 % N as urea and ‘Agrotain®’ (N-(n-butyl) thiophosphoric triamide) @ 5 L t?1 of urea as a urease inhibitor], ‘Nhance’, a fine particle spray [containing 46 % N as urea, ‘Agrotain’ @ 1 L t?1 of urea and gibberellic acid (applied at a rate of 10 g ha?1)] and urea ammonium nitrate in solution (UAN) surface applied. Ammonia loss was determined in autumn and spring using a micrometeorological method. In autumn, use of the Green Urea and Nhance reduced NH3 loss from the 30 % of applied N lost from the granular urea to 9 and 23 % respectively. Loss from all treatments in spring was very small (<2 % of applied N), because 4 mm of rain fell within 24 h of application onto an already wet site. The use of the Nhance and Green Urea instead of granular urea did not result in increased agronomic efficiency or recovery efficiency of the applied N, and this is most likely due to the presence of sufficient available N from both fertiliser application and the soil. A 15N study recovered 72.8 % of the applied N in the plants and soil, and showed that 30 % of the total N taken up by the plant was derived from the fertiliser, and 70 % from the soil.  相似文献   

14.
The use of fluid fertilizers has increased in recent years. Plant response to field management practices of fluid and solid N fertilizers in furrow-irrigated field studies has not been well-documented. This research studied the response of corn (Zea mays L.) to several field management practices of fluid and solid N fertilizers applied at several rates. Corn grown with sidedressed applications of the fluid fertilizers, urea ammonium nitrate (UAN) and 18-0-0+7Ca, generally had higher grain yields, higher yield efficiencies, higher ear populations, larger seed size, more kernels per ear, and a higher ear leaf N concentration than corn grown with preplant broadcast treatments of urea, ammonium nitrate (AN), and UAN. In 1988, corn grown with 280 kg N ha–1 of AN applied preplant broadcast had a lower grain yield, yield efficiency, kernels per ear, and ear leaf N concentration, while ear population and kernel size were unchanged, in comparison to split applications of UAN at 224 kg N ha–1. In 1989, corn grown with three split applications of UAN at 280 kg N ha–1 had a higher grain yield and produced more kernels per ear without affecting yield efficiency, ear population, kernel size, or ear leaf N concentration compared with treatments at the 224 kg N ha–1 rate. Use of split, side-dressed N management practices in furrow-irrigated corn should eliminate the need to use excessive N rates while maintaining grain yields and other plant responses, resulting in more efficient N use than traditionally achieved.  相似文献   

15.
Nutrient management recommendations are needed to increase nitrogen uptake efficiency, minimize nutrient losses and reduce adverse effects on the environment. A study of the effects of nitrogen fertilization on N losses and fruit yield of 6-yr-old Valencia sweet orange (Citrus sinensis (L.) Osb.) on Rangpur lime rootstock (C. limonia Osb.) grove was conducted in an Alfisol in Brazil from 1996 to 2001. Urea (UR) or ammonium nitrate (AN) fertilizers were surface-applied annually at rates of 20, 100, 180, and 260 kg N ha–1 split into three applications from mid-spring to early fall. A semi-open trapping system, using H3PO4 + glycerol-soaked plastic foams, was used for selected treatments in the field to evaluate NH3 volatilized from applied N fertilizers. Ammonia volatilization reached 26 to 44% of the N applied as UR at the highest rate of N used. Ammonia volatilization losses with AN were lower (4% of the N applied). On the other hand, AN resulted in greater nitrate leaching and greater soil acidification than UR. A marked effect of AN fertilizer on soil pH (CaCl2) in the 0–20 cm depth layer was observed with a decrease of up to 1.7 pH units at the highest N rate. Acidification was followed by a decrease in exchangeable Ca and Mg; consequently, after 5 yr of fertilization with AN, soil base saturation dropped from 77% in the plots treated with 20 kg N ha–1 per year, to 24% in those that received 260 kg N ha–1 per year. The effect of N sources on fruit yield varied from year to year. In 2001, for a calculated N application rate of 150 kg ha–1, the fertilizer efficiency index of UR was 75% of that of AN.  相似文献   

16.
An assessment of N loss from agricultural fields to the environment in China   总被引:48,自引:1,他引:48  
Using the 1997 IPCC Guidelines for National Greenhouse Gas Inventory Methodology, and statistical data from the China Agricultural Yearbook, we estimated that the direct N2O emission from agricultural fields in China in 1990 was 0.282 Tg N. Based on micro-meteorological field measurement of NH3 volatilization from agricultural fields in different regions and under different cropping systems, the total NH3 volatilization from agricultural fields in China in 1990 was calculated to be 1.80 Tg N, which accounted for 11% of the applied synthetic fertilizer N. Ammonia volatilization from agricultural soil was related to the cropping system and the form of N fertilizer. Ammonia volatilization from paddy fields was higher than that from uplands, and NH4HCO3 had a higher potential of NH3 volatilization than urea. N loss through leaching from uplands in north China accounted for 0.5–4.2% of the applied synthetic fertilizer N. In south China, the leaching of applied N and soil N from paddy fields ranged from 6.75 to 27.0 kg N ha-1 yr-1, while N runoff was between 2.45 and 19.0 kg N ha-1 yr-1.  相似文献   

17.
In southern Africa, tillage research has focused on rainfed smallholder cropping systems, while literature on high-input irrigated cropping systems is limited. We evaluated the effects of conventional (CT), minimum (MT) and no-till (NT) tillage systems on soil organic carbon (SOC), bulk density, water-stable aggregates (WSA), mean weighted diameter (MWD) and crop yields in an irrigated wheat–cotton rotation. Soil data were monitored in the first and final year, while yields were monitored seasonally. Average bulk densities (1.5–1.7 Mg m−3) were similar among tillage systems, but often exceeded the critical limit (1.60 Mg m−3) for optimum root growth. Conversion from CT to MT and NT failed to ameliorate the high bulk densities associated with the alluvial soil. SOC (g kg−1) at 0–15 cm was higher (P < 0.05) under MT (3.9–5.8) and NT (4.2–5.6) than CT (2.9–3.3). Corresponding horizon SOC stocks (Mg C ha−1) for the tillage treatments were; 9.3–13.9 (MT), 9.3–13.5 (NT) and 7.3–7.7 (CT). In the final year, significant (P < 0.05) tillage effects on SOC stocks were also observed at 15–30 cm. Cumulative SOC stocks (Mg C ha−1) in the 0–60 cm profile were higher (P < 0.05) under MT (32.8–39.9) and NT (32.9–41.6) than CT (27.8–30.9). On average, MT and NT sequestered between 0.55 and 0.78 Mg C ha−1 year−1 at 0–30 cm depth, but a net decline (0.13 Mg C ha−1 year−1) was observed under CT. At 0–30 cm, MT and NT had higher (P < 0.05) MWD (0.19–0.23 mm) and WSA (2.3–3.5%) than CT (MWD: 0.1–0.12 mm, WSA: ≈1.0%). Both MWD and WSA were significantly (P < 0.05) correlated to SOC. Seasonal yields showed significant (P < 0.05) tillage effects, but 6-year mean yields (t ha−1) were similar (CT: 4.49, MT: 4.33, NT: 4.32 for wheat; CT: 3.30, MT: 2.82, NT: 2.83 for cotton). Overall, MT and NT improved soil structural stability and carbon sequestration, while impacts on crop productivity were limited. Therefore, MT and NT are more sustainable tillage systems for the semi-arid regions than conventional tillage. S. Chakanetsa—Deceased.  相似文献   

18.
Establishment of proper guidelines for irrigation and nitrogen (N) fertilizer management may lead to higher crop fertilizer N use efficiency (FNUE), increasing water conservation and reducing nutrient losses from agricultural systems. The objective of this study was to determine FNUE of potato for three application timings: at planting, emergence and tuber initiation cultivated under three irrigation methods: seepage, subirrigation and sprinkler. A total of 168 kg ha?1 of N was equally split into three applications of 56 kg ha?1 as ammonium nitrate (NH4NO3). FNUE from each application timing in all irrigation methods was evaluated substituting the conventional N fertilizer by an isotope labeled-ammonium nitrate (15NH 4 15 NO3) with 1.18% enrichment in excess. Irrigation method had no significant effects on tuber yield and FNUE. The average tuber yield was 32.1 Mg ha?1 and overall FNUE was 41%. Across the N application timing treatments, the lowest FNUE was measured for the at-planting application (18%), followed by the emergence N application (44%) and tuber initiation N application (62%). Unaccounted N fertilizer during the potato season amounted to 98 kg ha?1 from the total 168 kg ha?1 of N applied. N applied at emergence and tuber initiation were important to increase FNUE and tuber yield, however, some N was required at planting, even with the high potential of N losses for that application.  相似文献   

19.
Four field experiments were conducted to investigate biological N2 fixation (BNF) by irrigated soybean under conservation agriculture (CA) as compared with conventional tillage when crop residue (CR) is retained on the soil surface, and the fate of 15N-labelled fertilizer in succeeding wheat in the semi-arid subtropical soil. Comparable amounts of BNF by soybean were obtained using 15N isotope dilution and 15N natural abundance methods, suggesting that the latter, a less costly method could be employed to estimate BNF. Soybean could fix 61–125 kg N ha?1 (52–85% of total N uptake), depending upon tillage and CR management. Significant increases in BNF by soybean were recorded when CR was retained on the soil surface of CA plots presumably due to better activity of rhizobia because of the relatively cooler rhizosphere environment. Recovery of applied fertilizer N in the soil–plant system at harvest of the wheat crop showed that 36–47% of it was utilized by the crop, 37–49% was left in the soil profile and 5–27% was lost (unrecovered fertilizer N). The recovery of fertilizer N in the soil profile revealed that the majority of it was present in the first 15 cm (54–61%), although downward movement of fertilizer N was also evident up to 120 cm soil depth. These results illustrate enormous benefits of CA practices with CR retained on soil surface on BNF in soybean, and similar patterns in N uptake and translocation from vegetative parts to grain and utilization of applied fertilizer N by wheat in both tillage systems.  相似文献   

20.
As farmers in southern Australia typically apply nitrogen (N) to cereal crops by top-dressing with ammonia (NH3) based fertilizer in late winter or early spring there is the potential for large losses of NH3. This paper describes the results of micrometeorological measurements to determine NH3 loss and emission factors following applications of urea, urea ammonium nitrate (UAN), and ammonium sulfate (AS) at different rates to cereal crops at two locations in southern Australia. The amounts of NH3 lost are required for farm economics and management, whilst emission factors are needed for inventory purposes. Ammonia loss varied with fertilizer type (urea?>?UAN?>?AS) and location, and ranged from 1.8 to 23?% of N applied. This compares with the emission factor of 10?% of applied N advocated by IPCC ( 2007). The variation with location seemed to be due to a combination of factors including soil texture, soil moisture content when fertilizer was applied and rainfall after fertilizer application. Two experiments at one location, 1?week apart, demonstrated how small, temporal differences in weather conditions and initial soil water content affected the magnitude of NH3 loss. The results of these experiments underline the difficulties farmers face in timing fertilization as the potential for loss, depending on rainfall, can be large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号