首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
研制出了铋镓铝共掺的高浓度掺铒光纤,这种掺铒光纤在1 530 nm处的吸收系数达到了28.5 dB/m.利用这种铋镓铝共掺的高浓度掺铒光纤制成了C波段和L波段的掺铒光纤放大器(EDFA),测试这两种放大器的荧光谱和增益谱线.利用2.5 m的高浓度掺铒光纤制作的C波段EDFA就实现了高增益.利用10 m这种掺铒光纤制作的L波段放大器实现了有效的I波段放大.  相似文献   

2.
傅永军  简伟  郑凯  简水生 《中国激光》2006,33(3):47-350
在光纤研制过程中掺铒光纤(EDF)的纤芯折射率控制尤为关键。对采用改进型化学气相沉积(MCVD)技术沉积纤芯疏松层,并用溶液浸泡法,采用不同铝离子浓度的氯化铒溶液制作的四种掺铒光纤进行了折射率测试和电子探针微小分析(EPMA)。提出了掺铝将改变原疏松层中的二氧化硅和二氧化锗的比例,铝离子进入疏松层越多,最后得到的掺铒光纤纤芯的二氧化锗的摩尔分数就会越少,用氧化铝生成和二氧化锗挥发两个化学反应式进行了解释。掺铝和掺锗都会提高纤芯的折射率,但由于锗减少引起的折射率降低量大于铝提高引起的折射率提高量,导致掺铝后纤芯的整体折射率下降。  相似文献   

3.
在不考虑放大自发辐射(ASE)对掺铒光纤放大器(EDn)饱和特性影响的条件下,推出了掺铒光纤放大器(EDFA)三能级系统功率传输的解析表达式,简化了理论分析,所得结果也适用于二能级系统.根据该简化分析方法具体计算了前向泵浦时光纤CATV用掺铒光纤放大器(ED队)的信号增益曲线.计算表明,当信号增益约在25db以下,即在光纤CATV用掺铒光纤放大器(EDFA)的工作范围内,简化分析所得的计算结果与较精确的数值计算结果一致.  相似文献   

4.
为了研究不同增益光纤长度下1555nm高功率光纤放大器的输出功率,采用两级混合结构的方法,用掺铒光纤放大器和双包层铒镱共掺光纤放大器分别作为1级预放大器和2级主放大器。掺铒光纤放大器对信号光进行预放大,并提高放大器的信噪比;双包层铒镱共掺光纤放大器为主放大器,其双包层结构可以把更多的多模抽运光耦合进系统。对铒镱共掺光纤的最佳长度做了理论分析和实验验证,在信号光功率为10mW、掺铒光纤放大器的抽运功率为318.58mW、双包层铒镱共掺光纤放大器的抽运功率为11.71W、增益光纤长度为14m时,输出功率取得了2.11W的实验数据。在分析输出信号光谱时发现,L波段附近有放大自发辐射谱出现,这是选择的增益光纤过长导致的。结果表明,在光功率和信号光功率一定时,光纤放大器有一个最佳的光纤长度。这一结果对研究光纤放大器的高功率输出是有帮助的。  相似文献   

5.
高性参掺铒光纤放大器的优化研究   总被引:4,自引:3,他引:4  
童治  魏淮 《光电子.激光》2001,12(9):879-882
根据二能级近似的Giles模型,计算了对于给定泵浦功率的最佳掺铒光纤长度,实验研究了掺铒光纤长度对于放大器增益谱形状的影响,通过进一步优化掺铒光纤长度获得了高增益,低噪声指数和宽带平坦增益谱的高性能放大器,并针对在DWDM和长距离多级联放大器系统中的应用提出了改进方案。  相似文献   

6.
本文论述了掺铒光纤放大器在正向泵浦、反向泵浦时,它的增益与自发辐射特性的不同,通过对电子工业部第四十六研究所研制的掺铒光纤吸收谱的测量,计算了正向泵浦、反向泵浦时,泵浦光、某一波长的荧光功率、荧光总功率及信号光功率随光纤长度的变化,分析了正反向泵浦时,掺铒光纤放大器的荧光谱与增益谱,并讨论了双向泵浦情况下,放大器增益与光纤长度的关系。  相似文献   

7.
概述了掺铒光纤放大器的发展情况、原理及其在密集波分复用系统中的应用,重点阐述了掺铒光纤放大器与拉曼放大技术的组合应用,最后指出这两种技术的组合应用能明显提高长距离光纤通信系统性能,使掺铒光纤放大器具有更广阔的应用前景。  相似文献   

8.
讨论掺铒光纤放大器的设计与特性分析。采用Giles模型,给出了功率传输方程,采用数值积分法,分析设计了一种实际光纤放大器的结构参数,给出了放大器的主要特性。  相似文献   

9.
掺铒光纤放大器   总被引:2,自引:0,他引:2  
阐述掺铒光纤放大器(EDFA)的原理和结构,介绍掺铒光纤放大器在密集波分复用(DWDM)传输系统中的应用,掺铒光纤放大器的优缺点以及发展前景。  相似文献   

10.
安洁哲  庞勇 《量子电子学》1994,11(4):255-260
本文论述了掺铒光纤放大器在正向泵浦、反向泵浦时,它的增益与自发辐射特性的不同,通过对电子工业部第四十六研究所研制的掺铒光纤吸收谱的测量,计算了正向泵浦,反向泵浦时,泵浦光,甘一滤长的荧光功率、荧光总功率及信号光功率随光纤长度的变化,分析了正反向泵浦时,掺铒光纤放大器的荧光谱与增益谱,并讨论了双向泵浦情况下,放大器增益与光纤长度的关系。  相似文献   

11.
The crown-like zinc oxide(Zn O)samples,which are composed of a hexagonal cap and a tower-like shaft,are prepared by vapor transport method.The hexagonal cap,working as a whispering gallery mode(WGM)resonant cavity,demonstrates density-dependent ultraviolet(UV)lasing emission with a broadened and squared photoluminescence(PL)profile under UV excitation at 355 nm.Theoretical analyses based on Fermi golden rule show that the broadened spectrum profile results from the special optical mode density characteristics in a WGM micro-cavity,which is in agreement with the observed results.  相似文献   

12.
基于光纤环形镜的L-波段掺铒光纤放大器增益的提高   总被引:3,自引:0,他引:3  
提出了一种基于光纤环形镜作为反射器的反射式L-波段掺铒光纤放大器(EDFA)结构。光纤环形镜不但可以反射后向放大自发辐射(ASE)作为二次抽运源,而且还可以反射信号,使信号得到二次放大。当抽运功率为115mW时。在1570~1605nm波长范围内,反射式L-波段掺铒光纤放大器的平坦小信号增益达到29.14dB,与前向抽运方式L-波段掺铒光纤放大器相比(保持平坦性不变)。增益提高了5.33dB。分别输入波长为1580nm和1600nm的信号,反射式L-波段掺铒光纤放大器的饱和输出功率为7.63和7.6dBm.与前向抽运方式L-波段掺铒光纤放大器相比分别提高了2.98和3dB。  相似文献   

13.
《Electronics letters》2008,44(18):1082-1083
A novel low-noise extended L-band silicate erbium-doped fibre amplifier (EDFA) is proposed, consisting of two novel gain-flattened gain blocks for wavelength-division multiplexing (WDM) signals from 1562.2 to 1619.6 nm. Each gain block consists of three isolated phosphorus/ alumina co-doped silicate EDFs, an intermediate embedded gain flattening filter (GFF), a short wavelength pump laser diode, and a pump bypass and/or a recycle path. The proposed EDFA, which uses only three pump laser diodes, has achieved noise figures as much as 6.1 dB lower than those realised by an earlier EDFA, when its intermediate optical attenuator has large signal losses and the input signal power is low.  相似文献   

14.
A new technique to suppress temperature dependence of EDFA gain is proposed and experimentally demonstrated. A specially designed EDF, the glass host of which is Sb-doped silica, showed an opposite sign of temperature dependent gain coefficients in C-band compared to Al-doped silica EDFs. Concatenation of those two EDFs showed an improved gain variation less than /spl plusmn/0.37 dB for the saturated gain over 15 dB, within -40 to +80/spl deg/C.  相似文献   

15.
Er3+/Ce3+ co-doped tellurite glasses with composition of TeO2-GeO2-Li2O-Nb2O5 were prepared using conventional melt-quenching technique for potential applications in Er3+-doped fiber amplifier (EDFA). The absorption spectra, up-conversion spectra and 1.53 µm band fluorescence spectra of glass samples were measured. It is shown that the 1.53 µm band fluorescence emission intensity of Er3+-doped tellurite glass fiber is improved obviously with the introduction of an appropriate amount of Ce3+, which is attributed to the energy transfer (ET) from Er3+ to Ce3+. Meanwhile, the 1.53 µm band optical signal amplification is simulated based on the rate and power propagation equations, and an increment in signal gain of about 2.4 dB at 1 532 nm in the Er3+/Ce3+ co-doped tellurite glass fiber is found. The maximum signal gain reaches 29.3 dB on a 50 cm-long fiber pumped at 980 nm with power of 100 mW. The results indicate that the prepared Er3+/Ce3+ co-doped tellurite glass is a good gain medium applied for 1.53 µm broadband and high-gain EDFA.  相似文献   

16.
L-波段掺铒光纤放大器的优化设计   总被引:2,自引:0,他引:2  
针对传统L-波段掺铒光纤放大器(EDFA)转换效率不高,提出了一种在未泵浦掺铒光纤的输入端插入一根布拉格光栅(FBG)的L-波段EDFA新结构。实验表明这种结构可以提高功率转换效率,小信号增益增加约3dB。基于考虑ASE噪声的Giles模型,建立了这种EDFA的理论模型,并运用数值模拟算法系统地分析了布拉格波长及其反射率等参量对放大性能的影响。  相似文献   

17.
为了实现高平坦的C+L波段放大的自发辐射光(AS E)光输出,提出并设计了一种 基于LD单泵浦源,并且采用两段掺杂浓度完全相同的掺Er3+光纤(EDF)作为增 益介质的宽 带光源。对光源的基本原理及实现方案进行了理论分析和实验验证。首先,根据Er3+ 能级 结构介绍C+L波段宽带光源 的产生原理。然后,设计系统结构,在结构中采用976nm LD作泵 浦源,通过耦合器将泵浦光按照一定比 例分为两路对EDF泵浦;采用两支波分复用器(WDM)将泵浦光耦合进入EDF,并通过 熔接环形镜(FLM)提高转换效率;输出端熔 接隔离器(ISO)防止端面回波对输出造成影响。最后,根据EDF的ASE增益 数学模型对EDF长度进行了分析和优 化。实验结果表明,用于调整C波段ASE光输出的EDF1长选用2m,用于调整L波段ASE光输出 EDF2长选为16m, 获得平坦C+L波段ASE光输出,在不使用任何滤波器的条件下,在1540~1610nm波段范围内光谱平坦度为±0.525dB,在 1520~1610nm范围内光 谱平坦度为±1.119dB。本文方法使用1支976nm LD实现了C+L波段的高平坦输出,简化了系统结构,并降低了系统成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号