首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
王越峰  王溪波 《计算机科学》2017,44(Z6):567-570
在Hadoop集群环境下本地性调度算法是提高数据本地性的算法。本地性调度算法的调度策略的本质是提高数据本地性,减少网络传输开销,避免阻塞。但是由于Map任务的完成时间不同,Reduce任务存在的等待现象影响了作业的平均完成时间,使得作业的完成时间增加,进而引起系统的性能参数不佳。因此提出在保留原算法数据本地性要求的基础上集成可抢占式的调度方法。在Reduce任务等待时,挂起该任务并释放资源给其他Map任务,当Map任务完成到一定程度后,重新调度Reduce任务。基于上述调度策略设计了集成抢占式策略的本地性调度。为了对改进的算法进行验证,通过实验对本地性调度算法和集成抢占式本地性调度算法进行比较。实验结果表明,在相同数据上,集成抢占式本地性调度算法的平均完成时间有明显的降低。  相似文献   

2.
陈若飞  姜文红 《软件》2015,(2):64-68
作为开源云计算平台的核心技术之一,Map Reduce作业处理框架及其作业调度算法,对整个系统的性能起着至关重要的作用,而数据本地性是衡量作业调度算法好坏的一个重要标准,首先本文介绍和分析了Map Reduce基本原理,Map Reduce作业处理机制和Map Reduce作业调度机制及其在数据本地性方面表现出的优缺点等相关内容。其次,针对原生作业调度算法在数据本地性考虑不周全的问题,结合数据预取技术的可行性与优势,通过引入资源预取技术设计并实现一种基于资源预取的Hadoop Map Reduce作业调度算法,使作业执行效率更高。  相似文献   

3.
解慧娟 《数字社区&智能家居》2014,(14):3206-3208,3211
该文在Hadoop实现的MapReduce架构基础上,分析了现有的三种作业调度算法,针对当前算法没有考虑服务器负载状况和数据本地性差的缺点,提出了基于可变长度队列的公平调度算法(FSVQ),该算法分析了空闲节点率,并通过采取等待的办法满足考虑数据本地性。实验证明该算法可增加服务器集群的工作效率,减少网络延迟,具有实际的应用意义。  相似文献   

4.
为提高Hadoop作业调度的效率,增加云平台的吞吐率,提出了一种基于Hadoop云计算平台的作业调度算法。该算法在加权轮转调度算法的基础上,针对MapReduce的运行特点,增加了改进map任务本地性调度的因素,使得作业调度仍然保持了相对的公平性,并通过提高轮转周期内的map任务数据本地性,减少了任务的执行时间。实验结果证明,该调度算法与加权轮转调度算法相比,较好地提高了任务本地执行的比例,缩短了云计算系统内作业的总执行时间。  相似文献   

5.
本文详细论述了应用于静态优先级实时系统的抢占阈值调度算法。描述了算法实现和任务集合可调度性判定公式的推导,分析了算法的性能特点,阐述了抢占阈值调度是静态优先级嵌入式实时系统开发中调度算法的合适选择。  相似文献   

6.
朱洁  赵红  李雯睿 《计算机应用》2014,34(11):3227-3230
Hadoop集群单队列作业调度会产生短作业等待、资源利用率低的问题;采用多队列调度可兼顾公平、提高执行效率,但会带来手工配置参数、资源互占、算法复杂等问题。针对上述问题,提出三队列作业调度算法,利用区分作业类型、动态调整作业优先级、配置共享资源池、作业抢占等设计,达到平衡作业需求、简化一般作业调度流程、提升并行执行能力的目的。对短作业占比高,各作业占比均衡以及一般作业为主,偶尔出现长、短作业三种情况与先进先出(FIFO)算法进行了对比实验,结果三队列算法的运行时间均比FIFO算法要少。实验结果表明,在短作业聚集时,三队列算法的执行效率提升并不显著;但当各种作业并存且分布均衡时,效果很明显,这符合了算法设计时短作业优先、一般作业简化流程、兼顾长作业的初衷,提高了作业整体执行效率。  相似文献   

7.
在Hadoop框架下计算资源和数据资源可以在不同物理位置的特点产生本地化问题。延迟调度算法的产生旨在解决本地化问题, 此算法根据任务待处理数据的物理位置作为作业的计算节点, 调度任务至目标节点。但是可能出现同一作业中若干任务集中运行在某一计算节点, 导致作业达不到理想的并行效果。针对原有的延迟调度算法, 提出延迟一容量调度算法, 允许部分任务选择非本地化节点作为原延迟调度算法中任务的目标计算节点, 以提高作业的响应时间与增加作业的并行程度。最后通过实验对比分析, 改进后的算法在执行效率和并行效果明显优于原延迟调度算法。  相似文献   

8.
针对Hadoop平台下默认调度算法FIFO、计算能力调度算法以及公平调度算法在调度过程中遵守严格的队列顺序,导致一些任务被调度到不满足数据本地性节点上的问题,提出一个基于本地性的调度算法——延时调度。该算法在维护公平性原则的同时,当一个被调度的作业无法启动一个本地的任务时,让这个任务等待一小段时间,调度其他作业先执行。实验结果表明,此调度算法缩短了作业平均响应时间,有效增加了集群系统的吞吐量,提高了集群资源利用率。  相似文献   

9.
Hadoop集群作业的调度算法   总被引:1,自引:0,他引:1  
王峰 《程序员》2009,(12):119-121
Hadoop集群作业调度算法一直都是社区中讨论最热门的话题之一,当前有大量的设计与实现围绕着它展开。作业调度算法已经作为Hadoop实现中一个可插拔的组件,这也为大家能够对它进行更深入的探索打开了方便之门。  相似文献   

10.
为提升Hadoop集群在异构环境下处理硬实时作业的性能,提出一种基于历史进度自动调整作业优先级的调度算法(HAPS)。该算法实时监控作业进度信息,对作业进度率进行指数平滑预测,计算作业剩余执行时间,动态估算作业空闲时间。并据此实时更新作业队列中作业的优先级顺序,优先调度空闲时间小的作业。实验结果表明,HAPS有效地提高了异构环境下硬实时作业的执行成功率。  相似文献   

11.
高燕飞  陈俊杰  强彦 《计算机科学》2015,42(9):45-49, 69
目前,云计算环境具有动态、异构和海量多类型任务并发等特征,随着集群规模不断增大、用户QoS不断增多,现有调度算法越来越难以适应动态变化的环境及满足用户的需求。针对Hadoop平台下现有调度器不能根据作业运行状态和资源使用情况进行动态调整的问题,提出了Hadoop下基于作业分类的动态调度算法。该算法在使用朴素贝叶斯分类算法对队列中作业进行分类的过程中,根据各个作业的类型,预先设定类别权值,将队列中的作业分类,并引入效用函数,根据用户提交时的预期完成时间QoS和作业完成情况估算其作业完成时间,实现动态设置作业优先级。实验表明,使用提出的算法不仅能有效减少 作业的分类时间,而且能明显提高 动态性和用户QoS。  相似文献   

12.
基于LATE的Hadoop数据局部性改进调度算法   总被引:2,自引:0,他引:2  
调度问题是目前云计算研究中的热点问题,其目的是如何协同云计算资源,使其得到充分合理的利用。数据局部性是特定云平台Hadoop的主要特性之一。针对该特性,在Hadoop原有调度算法LATE的基础上提出了一种基于数据局部性的改进算法,以解决数据局部性带来的慢任务备份执行时读取数据要占用大部分时间而影响其处理速率的问题。最后,对该算法进行了实验及性能分析,并验证了算法在提高任务的响应时间和整个系统吞吐率方面有很大改进。  相似文献   

13.
本文研究并实现了大数据平台 Hadoop YARN 与深度学习框架 TensorFlow 的结合。通过对 DRF 算法的扩展,使得 Hadoop YARN 在原先支持 CPU 和内存的基础上,可以对 GPU 资源进行管理和调度。通过 YARN 的应用接口,把 TensorFlow 封装成了 YARN 的应用程序之一,把原来的分布式程序在多节点手动分发启动改为了在单节点自动分发启动,单机版不变。本文设计了多组实验对 YARN+TensorFlow 进行了多方位的测试,实验结果表明 YARN 和 TensorFlow 相结合相比原生 TensorFlow 程序具有相似的加速比,可以满足单系统多用户对 GPU 资源的使用,有效提高 GPU 资源的使用效率和编程人员的工作效率,增加系统的复用率。  相似文献   

14.
针对Hadoop异构集群中计算和数据资源的不一致分布所导致的调度性能较低的缺点,设计了一种基于Hadoop集群和改进Late算法的并行作业调度算法;首先,介绍了基于Hadoop框架和Map-Reduce模型的调度原理,然后,在经典的Late调度算法的基础上,对Map任务和Reduce任务的各阶段执行时间进度比例进行存储和更新,为了进一步地提高调度效率,将慢任务迁移到本地化节点或离数据资源较近的物理节点上,并给了基于改进Late算法的作业调度流程;为了验证文中方法,在Hadoop集群系统上测试,设定1个为Jobtracker主控节点和7个为TaskTracker节点,实验结果表明文中方法能实现异构集群的作业调度,且与其它方法比较,具有较低的预测误差和较高的调度效率。  相似文献   

15.
在服务网格中为用户提供满足SLA(service level agreement)的服务,是实现网格“非凡的服务质量”的一个重要的研究问题。本文提出了网格本地资源基于任务SLA的调度算法,给出了算法的数学模型和描述。在基于Java的网格环境调度模拟器中对算法进行了验证,该算法能实现满足用户SLA约束的调度,为满足全局的服务质量水平提供本地调度支持,对提高网格服务质量水平具有实际意义。  相似文献   

16.
云计算的研究和应用将有一片广阔的前景,详细研究和分析了Hadoop平台架构和核心原理,研究了Hadoop现有的典型作业调度算法,并针对算法存在需要预先配置的问题,提出了基于朴素贝叶斯分类的作业调度算法,通过仿真实验,可以看出改进的算法具备了良好的学习能力,性能良好,可以减轻管理员的负担,提高管理效率,减少人工错误的可能性.  相似文献   

17.
针对当前Hadoop集群固有的任务级调度分配方法在运行中存在的负载分布不均的现象,着重对集群节点的执行能力进行了分析与研究.提出了一种基于节点能力的任务自适应调度分配方法.该方法根据节点历史和当前的负载状态,以节点性能、任务特征、节点失效率等作为节点任务量调度分配的依据,并使各节点能自适应地对运行的任务量进行调整.实验结果表明集群的总任务完成时间明显地缩减,各节点的负载更加均衡,节点资源的利用更为合理.  相似文献   

18.
Hadoop处理海量数据时,无论是Map任务还是Reduce任务都需要耗费大量的时间传输数据,故提出一种基于双重预取的调度算法;该算法通过估算节点上任务执行的进度来预测Map任务的执行节点,然后通知节点提前预取所需的数据,并且在Map任务完成的数量达到预定值时,开始为Reduce任务预取部分数据;由于在异构的环境下集群中节点的性能各不相同,为此采取了改进的预测模型,以提高任务进度判断的准确性;实验证明,本算法在作业响应时间等方面优于现有的调度算法。  相似文献   

19.
陈燕  于放  田月  刘璐 《计算机系统应用》2018,27(10):268-272
随着互联网技术的快速发展,各行各业所产生的信息数据也在以指数级的速度增长.传统的车辆调度算法已经不能够很好地解决车辆调度问题中出现的实时性,大规模等问题.因此,本文构建了一种基于Hadoop的动态车辆调度并行智能优化算法.该算法以传统遗传算法为基础,通过改善遗传算法全局优化能力弱和收敛于局部次优解的问题,并利用Hadoop平台的并行计算机制对传统遗传算法进行改进,使其能够有效应对大规模、快速响应的车辆调度.数值计算结果表明:基于Hadoop的车辆调度算法能够有效提升传统调度算法的优化性能,在处理大规模车辆调度问题时具有良好的加速比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号