首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of nitrogen-doped porous carbons are prepared through KOH activation of a nonporous nitrogen-enriched carbon which is synthesized by pyrolysis of the polymerized ethylenediamine and carbon tetrachloride. The porosity and nitrogen content of the nitrogen-doped porous carbons depend strongly on the weight ratio of KOH/carbon. As the weight ratio of KOH/carbon increases from 0.5 to 2, the specific surface area increases from 521 to 1913 m2 g−1, while the nitrogen content decreases from 10.8 to 1.1 wt.%. The nitrogen-doped porous carbon prepared with a moderate KOH/carbon weight ratio of 1, which possesses a balanced specific surface area (1463 m2 g−1) and nitrogen content (3.3 wt.%), exhibits the largest specific capacitance of 363 F g−1 at a current density of 0.1 A g−1 in 1 M H2SO4 aqueous electrolyte, attributed to the co-contribution of double-layer capacitance and pseudocapacitance. Moreover, it shows excellent rate capability (182 F g−1 remained at 20 A g−1) and good cycling stability (97% capacitance retention over 5000 cycles), making it a promising electrode material for supercapacitors.  相似文献   

2.
Partially graphitized ginkgo-based activated carbon (GGAC) is fabricated from ginkgo shells by pyrolysis, KOH activation and heat treatment using cobalt nitrate as graphitization catalyst. The graphitization temperature is 900 °C. The GGAC has a microporous structure and its specific surface area is 1775 m2 g−1. XRD patterns show that the carbon becomes more graphitic after heat treatment. The specific capacitance of the GGAC reaches to 178 F g−1 at a potential scan rate of 500 mV s−1, which is superior to that of commercial activated carbons and ordered mesoporous carbons. The high electrochemical performance of the GGAC is attributed to its good electronic conductivity and high surface area. Partially graphitized activated carbon is a promising electrode material for electrochemical supercapacitors with high rate performance.  相似文献   

3.
Highly microporous carbons with narrow pore size distribution have been prepared by simultaneous carbonization and self-activation of tobacco wastes at temperatures ranging from 600 to 1000 °C. The efficiency of porosity development, without pores broadening, is attributed to well-distributed alkalis at the molecular level in the tobacco precursor. With Burley tobacco, the BET specific surface area and average micropore size L0 increased up to 800 °C (Burley 800), where the values reached maxima of 1749 m2 g−1 and 1.2 nm, respectively. At temperatures higher than 800 °C, annealing of the materials dominates and provokes a decrease of SBET and L0. Burley carbons were implemented in supercapacitors using 1 mol L−1 aqueous Li2SO4 or 1 mol L−1 TEABF4 in acetonitrile. In both electrolytes, the capacitance of Burley carbons followed the same trend as SBET and L0. Burley 800 demonstrated outstanding capacitance values of 167 F g−1 (at 0.8 V limit) and 141 F g−1 (at 2.3 V limit) in 1 mol L−1 aqueous Li2SO4 and 1 mol L−1 TEABF4, respectively. Such values, about 50% higher as compared to commercially available carbons, are attributed to the narrow pore size distribution of this carbon with a maximum of pores around 1.2 nm close to the size of solvated ions in these electrolytes.  相似文献   

4.
Two-dimensional mesoporous carbon sheet-like framework (MCSF) material has been prepared using mesoporous SiO2 nanosheet as template and coal tar pitch as carbon precursor. MCSF sheets consisting of numerous mesopores have a specific surface area of 582.7 m2 g−1. As a result, the MCSF electrode possesses a maximum specific capacitance of 264 F g−1 at 5 mV s−1, excellent rate capability (74% retention ratio at 1000 mV s−1), and impressive cycling stability with 91% initial capacitance retained after 5000 cycles at 200 mV s−1 in 6 mol L−1 KOH. MCSF symmetric supercapacitor exhibits a maximum energy density of 9.6 Wh kg−1 at 5 mV s−1 and a maximum power density of 119.4 kW kg−1 based on the total mass of the two electrodes in 1 mol L−1 Na2SO4 electrolyte.  相似文献   

5.
We developed a direct carbonization strategy to efficiently fabricate mesoporous N-containing carbon nanosheets (N-CNSs) by using polyaniline nanosheets as a carbon precursor. Physicochemical characterizations revealed that the as-synthesized N-CNSs with 5.9 wt.% N species possessed a well-developed mesoporous architecture with large specific surface area of 352 m2 g−1, high mesoporous volume of 0.32 cm3 g−1, and average pore size of ∼5.2 nm. When further utilized as an electrode for electrochemical capacitors, the mesoporous N-CNSs delivered a large specific capacitance of 239 F g−1 at 0.5 A g−1, and even 197 F g−1 at a high current load of 8 A g−1, indicating its good rate behavior. Furthermore, the capacitance degradation of ∼4% over continuous 5000 charge–discharge cycles at 6 A g−1 further verified its good electrochemical stability at high rates for long-term electrochemical capacitors application.  相似文献   

6.
Three-dimensional (3D) porous carbons with controlled mesopore and micropore structures were prepared through a simple and low-cost ultrasonic and impregnation assisted method from waste air-laid paper. The ammonia management was used to dope the 3D porous carbons with different types of nitrogen heteroatoms in a way that replaced carbon atoms. The N2 adsorption–desorption characterization suggested that the nitrogen-doped carbons have a high surface area of 1470 m2 g−1 with the average pore diameter of 4.2 nm, which are conducive to form electric double layer under high current density. The resulting 3D carbon exhibited a higher capacitance at 296 F g−1 in comparison with the nitrogen-free one at 252 F g−1 in 6 M KOH electrolyte. Moreover, a high power density ca. 0.313 kW kg−1 and energy density ca. 34.3 Wh kg−1 were achieved in the ionic liquid ([EMIm]BF4). The findings will open a new avenue to use waste materials for high-performance energy-storage devices.  相似文献   

7.
N-enriched mesoporous carbon nanofibers (NMCNFs) were prepared by an electrospinning technique using graphitic carbon nitride (g-C3N4) nanosheets both as sacrificial template and N-doping source. The resultant NMCNF film has a high N-doping level of 8.6 wt% and a high specific surface area of 554 m2 g−1. When directly used as the electrode material for supercapacitor, the free-standing NMPCNF film shows a significantly improved capacitive performance including a higher specific capacitance (220 F g−1 at 0.2 A g−1) and a better rate capability (∼70% retention at 20 A g−1) than those of microporous carbon nanofiber film prepared using the same process without using g-C3N4 nanosheets (145 F g−1 at 0.2 A g−1 and ∼45% retention at 20 A g−1). Moreover, the NMCNFs show superior stability with only a ∼3% decrease of its initial capacitance after 1000 cycles at a high current density of 10 A g−1. More significantly, the energy density of a symmetrical supercapacitor (SC) based on the NMPCNF film can reach 12.5 Wh kg−1 at a power density of 72 W kg−1.  相似文献   

8.
A series of highly nanoporous carbons have been prepared by converting benzoate–metal complexes, including zinc benzoate, magnesium benzoate and aluminium benzoate through a template carbonization process. The carbonization temperature plays a pivotal role in determining the carbon structures as well as the resultant electrochemical behaviors in supercapacitors. The carbon–Zn-900 sample derived from zinc benzoate complex has a high specific surface area (1466.4 m2 g–1), large pore volume (2.54 cm3 g–1) and hierarchical pore size distribution. It can also deliver a large specific capacitance of 314.1 F g−1 at a current density of 0.5 A g−1, together with a large energy density of 67.2 Wh kg−1 when measured in a three-electrode system using 6 mol L−1 KOH as electrolyte. Besides, the carbon–Zn-900 sample has been tested in a two-electrode system using [EMIm]BF4/AN as electrolyte at different operation temperatures of 25/50/80 °C.  相似文献   

9.
《Ceramics International》2017,43(7):5687-5692
This study reports the fabrication and characterization of mesoporous LaNiO3/NiO composite with a very high specific surface area for a battery-type electrode. The mesoporous LaNiO3/NiO composite was synthesized via a sol–gel method by using silica gel as a template, the colloidal silica gel was obtained by the hydrolysis and polymerization of tetraethoxysilane in the presence of La and Ni salts. We investigated the structure and the electrochemical properties of mesoporous LaNiO3/NiO composite in detail. The mesoporous composite sample showed a specific surface area of 372 m2 g−1 with 92.7% mesoporous area and displayed remarkable electrochemical performance as a battery-type electrode material for supercapacitor. The specific capacity values were found to be 237.2 mAh g−1 at a current density of 1 A g−1 and 128.6 mAh g−1 at a high current density of 20 A g−1 in 1 M KOH aqueous electrolyte. More importantly, this mesoporous composite also showed an excellent cycling performance with the retention of 92.6% specific capacitance after 60,000 charging and discharging cycles.  相似文献   

10.
A carbon material consisting of hollow carbon spheres anchored on the surface of carbon nanotubes (CNT–HCS) has been synthesized by an easy chemical vapor deposition process using a CNT–MnO2 hybrid as template. An electrode made of this material exhibits a maximum specific capacitance of 201.5 F g−1 at 0.5 A g−1 and excellent rate performance (69% retention ratio at 20 A g−1). It has impressive cycling stability with 90% initial capacitance retained after 5000 cycles at 5 A g−1 in 6 mol L−1 KOH. Symmetric supercapacitors based on CNT–HCS achieve a maximum energy density of 11.3 W h kg−1 and power density of 11.8 kW kg−1 operated within a wide potential range of 0–1.6 V in 1.0 mol L−1 Na2SO4 solution.  相似文献   

11.
Aminated tannin submitted to hydrothermal treatment led to nitrogen-doped gels in the absence of any cross-linker. Such gels were subcritically dried, freeze-dried or supercritically dried to obtain organic xerogels, cryogels and aerogels, respectively, having nitrogen contents between 3.0 and 3.7 wt.%. After pyrolysis at 900 °C, the materials presented nitrogen contents ranging from 1.9 to 3.0 wt.%, and surface areas as high as 860, 754 and 585 m2 g−1 for carbon aerogels, cryogels and xerogels, respectively. All of them displayed micropores associated with different mesopore volumes, depending on both the drying method and initial dilution of the precursor. When tested as supercapacitor electrodes, these carbon gels presented outstanding specific and normalised capacitances, up to 387.6 F g−1 and 69.5 μF cm−2, respectively, at a scan rate of 2 mV s−1 in 4 mol L−1 H2SO4 aqueous solution. These performances are higher than those obtained with high apparent surface area-activated carbons, as the measured capacitances are indeed among the highest ever reported. The influence of nitrogen- and oxygen-based moieties was investigated, and optimal N and O contents of 2–3 and 17–18 wt.%, respectively, were observed.  相似文献   

12.
Microporous carbon nanofibers were prepared by electrospinning from resole-type phenolic resin, followed by one-step activation. KOH was utilized to tune the fiber diameter and improve porous texture. By adjusting KOH content in the spinning solution, the fiber diameter could be controlled in the range of 252–666 nm and the microporous volume and specific surface area could be greatly improved. The electrochemical measurements in 6 M KOH aqueous solution showed that the microporous carbon nanofibers possessed high specific capacitance, considerable rate performance, and superior specific surface capacitance to conventional microporous carbons. The maximal specific capacitance of 256 F g−1 and high specific surface capacitance of 0.51 F m−2 were achieved at 0.2 A g−1. Furthermore, the specific capacitance could still remain 170 F g−1 at 20 A g−1 with the retention of 67%. Analysis showed that the high specific surface capacitance of the resultant carbons was mainly attributed to optimized pore size (0.7–1.2 nm) and the excellent rate performance should be principally due to the reduced ion transportation distance derived from the nanometer-scaled fibers.  相似文献   

13.
Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride (HCl). Captopril and furosemide exhibited desorption kinetics over 30–40 h, and ranitidine. HCl had a complete release time of 5–10 h. As evident from the slow release kinetics, the mesoporous carbons have excellent potential for the controlled-release media of the specific drugs targeted towards oral delivery. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200–400 m2 g−1 and pore volume of 0.2–0.6 cm3 g−1. The synthetic carbon has narrower pore widths and higher pore volume than the renewable counterpart and maintains a longer release time. The release kinetics reveals that the diffusivities of the drugs from carbon media are of equivalent magnitude (10−22 to 10−24 m2 s−1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecule by an order of magnitude. Thus, engineered pore morphology, along with its functionalization potential for specific interaction, can be exploited for optimal delivery system of a preferred drug.  相似文献   

14.
The physicochemical property of chemically prepared graphene can be significantly changed due to the incorporating of heteroatoms into graphene. In this article, boron-doped graphene sheets are used as carbon substrates instead of graphene for loading polyaniline by in situ polymerization. Compared with the individual component and polyaniline/non-doped graphene, the sandwich-like polyaniline/boron-doped graphene exhibits remarkably enhanced electrochemical specific capacitance in both acid and alkaline electrolytes. In a three-electrode configuration, the hybrid has a specific capacitance about 406 F g−1 in 1 M H2SO4 and 318 F g−1 in 6 M KOH at 1 mV s−1. In the two-electrode system of a symmetric supercapacitor, this hybrid achieves a specific capacitance about 241 and 189 F g−1 at 0.5 A g−1 with a specific energy density around 19.9 and 30.1 Wh kg−1, in the acid and alkaline electrolytes, respectively. The as-obtained polyaniline/boron-doped graphene hybrid shows good rate performance. Notably, the obtained electrode materials exhibit long cycle stability in both acid and alkaline electrolytes (∼100% and 83% after 5000 cycles, respectively). The improved electrochemical performance of the hybrid is mainly attributed to the introduction of additional p-type carriers in carbon systems by boron-doping and the well combination of pseudocapacitive conducting polyaniline.  相似文献   

15.
Carbons with high surface area and large volume of ultramicropores were synthesized for CO2 adsorption. First, mesoporous carbons were produced by soft-templating method using triblock copolymer Pluronic F127 as a structure directing agent and formaldehyde and either phloroglucinol or resorcinol as carbon precursors. The resulting carbons were mainly mesoporous with well-developed surface area, large total pore volume, and only moderate CO2 uptake. To improve CO2 adsorption, these carbons were subjected to KOH activation to enhance their microporosity. Activated carbons showed 2–3-fold increase in the specific surface area, resulting from substantial development of microporosity (3–5-fold increase in the micropore volume). KOH activation resulted in enhanced CO2 adsorption at 760 mmHg pressure: 4.4 mmol g−1 at 25 °C, and 7 mmol g−1 at 0 °C. This substantial increase in the CO2 uptake was achieved due to the development of ultramicroporosity, which was shown to be beneficial for CO2 physisorption at low pressures. The resulting materials were investigated using low-temperature nitrogen physisorption, CO2 sorption, and small-angle powder X-ray diffraction. High CO2 uptake and good cyclability (without noticeable loss in CO2 uptake after five runs) render ultramicroporous carbons as efficient CO2 adsorbents at ambient conditions.  相似文献   

16.
Functionalized porous carbon with three-dimensional (3D) interconnected pore structure has been successfully synthesized through direct heat-treatment of KOH-soaked soybeans. Benefiting from heteroatoms (N, O) doping, interconnected porous carbon framework with high surface area as well as high packing density (up to 1.1 g cm−3), the as-obtained porous carbon material exhibits high volumetric capacitance of 468 F cm−3, good rate capability and excellent cycling stability (91% of capacitance retention after 10,000 cycles) in 6 M KOH electolyte. More importantly, the as-assembled symmetric supercapacitor delivers high volumetric energy density of 28.6 Wh L−1 in 1 M Na2SO4 aqueous solution.  相似文献   

17.
Three-dimensional flower-like and hierarchical porous carbon material (FHPC) has been fabricated through a simple and efficient carbonization method followed by chemical activation with flower-like ZnO as template and pitch as carbon precursor. The hierarchical porous structure is composed of numerous micropores and well-defined mesopores in the interconnected macroporous walls. The FHPC electrode can achieve a relatively high capacitance of 294 F g−1 at a scan rate of 2 mV s−1 and excellent rate capability (71% retention at 500 mV s−1) with superior cycle stability (only 2% loss after 5000 cycles) in 6 mol L−1 KOH electrolyte. The symmetric supercapacitor fabricated with FHPC electrodes delivers a high energy density of 15.9 Wh kg−1 at a power density of 317.5 W kg−1 operated in the voltage range of 0–1.8 V in 1 mol L−1 Na2SO4 aqueous electrolyte.  相似文献   

18.
《Ceramics International》2015,41(6):7402-7410
Flexible composites with manganese oxides (MnOx) nanocrystals encapsulated in electropun carbon nanofibers were successfully fabricated via a simple and practical combination of electrospinning and carbonization process. The as-formed MnOx/carbon nanofibers composites have a rough surface with MnOx nanoparticles well embedded in the carbon nanofibers backbones. When used as electrodes for supercapacitor, the resulting MnOx/carbon nanofiber composites exhibit good electrochemical performance with a specific capacitance of 174.8 F g−1 at 2 mV s−1 in 0.5 M Na2SO4 electrolyte, a good rate capability at high current density and long-term cycling stability. It is expected that such freestanding composites could be promising electrodes for high-performance supercapacitors.  相似文献   

19.
S-doped microporous carbon materials were synthesized by the chemical activation of a reduced-graphene-oxide/poly-thiophene material. The material displayed a large CO2 adsorption capacity of 4.5 mmol g−1 at 298 K and 1 atm, as well as an impressive CO2 adsorption selectivity over N2, CH4 and H2. The material was shown to exhibit a stable recycling adsorption capacity of 4.0 mmol g−1. The synthesized material showed a maximum specific surface area of 1567 m2 g−1 and an optimal CO2 adsorption pore size of 0.6 nm. The microporosity, surface area and oxidized S content of the material were found to be the determining factors for CO2 adsorption. These properties show that the as synthesized S-doped microporous carbon material can be more effective than similarly prepared N-doped microporous carbons in CO2 capture.  相似文献   

20.
Porous nitrogen-doped carbon vegetable-sponges (N-DCSs) have been fabricated by chemical treatment of the Cu@C precursors using HNO3 for the first time. The obtained N-DCSs are porous three-dimensional (3D)-structure and similar to numerous agglomerated fluffy micro-vegetable-sponges. When the precursors are treated by H2SO4, carbon vegetable-sponges (CSs) without nitrogen doping are prepared. As anode materials in lithium ion batteries, the as-prepared N-DCSs show improved Li-storage capacity and cycling stability as compared with the pure CSs. They offer 870 mA h g−1 at 0.5 A g−1 after 300 cycles and high reversible capacity with 910 mA h g−1 at 0.2 A g−1 after cycled at different current densities, which are much higher than those of CSs. It is envisaged that the large surface area, unique 3D porous nanostructure and appropriate nitrogen doping are favorable for the superior electrochemical properties of N-DCSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号