首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alumina ceramics reinforced with 1, 3, or 5 vol.% multi-walled carbon nanotubes (CNTs) were densified by pressureless sintering. Commercial CNTs were purified by acid treatment and then dispersed in water at pH 12. The dispersed CNTs were mixed with Al2O3 powder, which was also dispersed in water at pH 12. The mixture was freeze dried to prevent segregation by differential sedimentation during solvent evaporation. Cylindrical pellets were formed by uniaxial pressing and then densified by heating in flowing argon. The resulting pellets had relative densities as high as ~99% after sintering at 1500 °C for 2 h. Higher temperatures or longer times resulted in lower densities and weight loss due to degradation of the CNTs by reaction with the Al2O3. A CNT/Al2O3 composite containing 1 vol.% CNT had a higher flexure strength (~540 MPa) than pure Al2O3 densified under similar conditions (~400 MPa). Improved fracture toughness of CNT–Al2O3 composites was attributed to CNT pullout. This study has shown, for the first time, that CNT/Al2O3 composites can be densified by pressureless sintering without damage to the CNTs.  相似文献   

2.
Preparation, structure and properties of hydrothermally treated carbon nanotube/boehmite (CNT/γ-AlOOH) and densification with spark plasma sintering of Al2O3 and CNT/Al2O3 nanocomposites were investigated. Hydrothermal synthesis was employed to produce CNT/boehmite from an aluminum acetate (Al(OH)(C2H3O2)2) and multiwall-CNTs mixture (200 °C/2 h.). TEM observations revealed that the size of the cubic shape boehmite particles lies around 40 nm and the presence of the interaction between surface functionalized CNTs and boehmite particles acts to form ‘nanocomposite particles’. Al2O3 and CNT/Al2O3 compact bodies were formed by means of spark plasma sintering (SPS) at 1600 °C for 5 min using an applied pressure of 50MPa resulting in the formation of stable α-Al2O3 phase and CNT–alumina compacts with nearly full density. It was also found that CNTs tend to locate along the alumina grain boundaries and therefore inhibit the grain coarsening and cause inter-granular fracture mode. The DC conductivity measurements reveal that the DC conductivity of CNT/Al2O3 is 10?4 S/m which indicate that there is a 4 orders of magnitude increase in conductivity compared to monolithic Al2O3. The results of the microhardness tests indicate a slight increase in hardness for CNT/Al2O3 (28.35 GPa for Al2O3 and 28.57 GPa for CNT/Al2O3).  相似文献   

3.
Exclusive hydrogenation of benzaldehyde to benzyl alcohol in gas phase continuous operation (393–413 K, 1 atm) was achieved over Au/Al2O3, Au/TiO2 and Au/ZrO2. Synthesis of Au/Al2O3 by deposition–precipitation generated a narrower distribution (2–8 nm) of smaller (mean = 4.3 nm) Au particles relative to impregnation (1–21 nm, mean = 7.9 nm) with increased H2 uptake under reaction conditions and higher benzaldehyde turnover. Switching reactant carrier from ethanol to water resulted in a significant enhancement of selective hydrogenation rate over Au/Al2O3 with 100% benzyl alcohol yield, attributed to increased available reactive hydrogen. This response extends to reaction over Au/TiO2 and Au/ZrO2.  相似文献   

4.
Carbon nanotubes (CNTs) were produced by gas phase single stage tubular microwave chemical vapor deposition (TM–CVD) using ferrocene as a catalyst and acetylene (C2H2) and hydrogen (H2) as precursor gasses. The effect of the process parameters such as microwave power, radiation time, and gas ratio of C2H2/H2 was investigated. The CNTs were characterized using scanning and transmission electron microscopy (TEM), and by thermogravimetric analysis (TGA). Results reveal that the optimized conditions for CNT production were 900 W reaction power, 35 min radiation time, and 0.6 gas ratio of C2H2/H2. TEM analyses revealed that the uniformly dispersed vertical alignment of multiwall carbon nanotubes (MWCNTs) have diameters ranging from 16 to 23 nm. The TGA analysis showed that the purity of CNT produced was 98%.  相似文献   

5.
The nanocrystalline TiO2 materials with average crystallite sizes of 9 and 15 nm were synthesized by the solvothermal method and employed as the supports for preparation of bimetallic Au/Pd/TiO2 catalysts. The average size of Au–Pd alloy particles increased slightly from sub-nano (< 1 nm) to 2–3 nm with increasing TiO2 crystallite size from 9 to 15 nm. The catalyst performances were evaluated in the liquid-phase selective hydrogenation of 1-heptyne under mild reaction conditions (H2 1 bar, 30 °C). The exertion of electronic modification of Pd by Au–Pd alloy formation depended on the TiO2 crystallite size in which it was more pronounced for Au/Pd on the larger TiO2 (15 nm) than on the smaller one (9 nm), resulting in higher hydrogenation activity and lower selectivity to 1-heptene on the former catalyst.  相似文献   

6.
To suppress photoresist residues on carbon nanotubes (CNTs) resulting from photolithography, CNTs are covered by a sacrificial layer during photolithography. Using aluminum oxide (Al2O3) deposited by low temperature atomic layer deposition as the sacrificial layer, the fabricated suspended CNT field-effect transistors exhibit low on-state resistances as low as 91 kΩ and low gate hysteresis of 0.5 V in ambient air. The effectiveness of this technique in suppressing residues on CNTs was affirmed by atomic force microscopy, scanning electron microcopy, and micro Raman spectroscopy. The etchants of Al2O3, hydrofluoric acid and phosphoric acid, were found not to cause defects in CNTs while removing the sacrificial Al2O3 layer. With the protection of the Al2O3 layer, oxygen plasma ashing can be performed without causing further defects in CNTs, and the minimum thickness was determined to be between 9 nm and 17 nm. This simple and effective approach can be easily implemented in different resist-based lithography processes to fabricate carbon nano-devices that are free of resist residues.  相似文献   

7.
The sintering behaviour and activation energy of Y2O3 partially stabilised ZrO2 and ZrO2–CNT (0.5 and 2 vol%) composites was determined using spark plasma sintering (SPS) under isothermal conditions. The sintering activation energy for the Y2O3 partially stabilised ZrO2 was found to be 456 kJ/mol. The addition of 2 vol% CNTs reduced the sintering activation energy to 172 kJ/mol. The significant reduction of the activation energy with the addition of only 2 vol% CNTs is attributed to the formation of a percolating network of CNTs providing a lower energy diffusion pathway. The sintering mechanism was found to be grain boundary diffusion for all samples suggesting that the presence of CNTs does not change the sintering mechanism but does lower the activation energy for the rate limiting step in the sintering process.  相似文献   

8.
The co-production of hydrogen and carbon nanotubes (CNTs) from the decomposition of ethanol over Fe/Al2O3 at different temperatures and feeding rates of ethanol was investigated systematically. The results indicated that Fe/Al2O3 was a quite active catalyst for the co-production of hydrogen and CNTs and that its activity and stability depended strongly on the Fe loading. Among all catalysts tested, 10 mol% Fe/Al2O3 was the most effective catalyst based on the ratio of hydrogen production, the total H2 yield, and the quality of the CNTs formed. The efficiency of hydrogen production from ethanol decomposition over 10 mol% Fe/Al2O3 reached a maximum of ∼80% at 800 °C and the yield of CNTs with well-oriented growth and uniform diameter was 141%. In addition, the reaction of hydrogen and CNTs co-produced from ethanol decomposition was proposed.  相似文献   

9.
The growth of carbon nanotubes (CNTs) on sheet metal surfaces (including low- and high-alloyed steel and Ni-plated steel) has been explored using a mixture of CO, CO2, and H2 as the precursor feedstock in a thermal chemical vapor deposition process. The influence of various experimental parameters such as the reactor temperature, reaction time, and precursor composition on the yield, purity, and dimensions of the CNTs has been elucidated. Addition of CO2 during CNT growth leads to higher carbon deposition rates, especially for low- and high-alloyed steel. The diameters of the obtained CNTs range from 12 to 300 nm at carbon deposition rates of ~0.3 mg cm?2 min?1. The CNTs are observed to be uniformly distributed and adhered firmly to the substrates. The experimental conditions for CNT growth on sheet metal surfaces are very similar to concentrations and temperatures of a typical effluent stream of the steel industry. This process thus holds potential to harness waste gases to fabricate CNT-based coatings that impart added functionality to sheet metals, while further reducing the carbon footprint of steel plants.  相似文献   

10.
An easy method to synthesize a strongly coupled cobalt ferrite/carbon nanotube (CoFe2O4/CNT) composite with oxygen bridges between CoFe2O4 and reduced carbon nanotubes (CNTs) by calcining the precursor material was reported. The precursor was prepared by an electrostatic self-assembly of the exfoliated Co(II)Fe(II)Fe(III)-layered double hydroxide (CoFeFe-LDH) nanosheets and acid treated CNTs. The deoxygenation effect of ferrous ion (Fe2+) in CoFeFe-LDH nanosheets on the oxygen-containing groups of acid treated CNTs was investigated by X-ray photoelectron spectroscopy (XPS) measurement. After thermal conversion, the obtained CoFe2O4 was bonded to the reduced CNTs through Metal–O–C (oxygen bridge), which was characterized by XPS, Fourier transform infrared spectroscopy, and Raman spectroscopy. When applied as an anode for lithium-ion battery, the CoFe2O4/CNT composite exhibited a low resistance of charge transfer and Li-ion diffusion, good cycle performance, and high rate capability. At a lower current density of 0.15 A·g−1, a specific discharge capacity of 910 mA·h·g−1 was achieved up to 50 cycles. When current density was increased to 8.8 A·g−1, the CoFe2O4/CNT composite still delivered 500 mA·h·g−1.  相似文献   

11.
The removal of carbon residue from ZnAl2O4 nanopowders by annealing at 500–800 °C leads to a decrease of specific surface area from 228.1 m2/g to 47.6 m2/g. At the same time, the average crystallite size increased from 5.1 nm to 14.9 nm. In order to overcome these drawbacks, a new solution for removing the carbon residue has been suggested: chemical oxidation using hydrogen peroxide. In terms of carbon removal, a H2O2 treatment for 8 h at 107 °C proved to be equivalent to a heat treatment of 1 h at 600 °C. The benefits of chemical oxidation over thermal oxidation were obvious. The specific surface area was much larger (188.1 m2/g) in the case of the powder treated with H2O2. The average crystallite size (5.8 nm) of ZnAl2O4 powder treated with H2O2 was smaller than the crystallite size (8.2 nm) of the ZnAl2O4 powder annealed at 600 °C.  相似文献   

12.
An Off-Lattice Monte Carlo model was developed to investigate effective thermal conductivities (Keff) and thermal transport limitations of polymer composites containing carbon nanotubes (CNTs) and inorganic nanoparticles. The simulation results agree with experimental data for poly(ether ether ketone) (PEEK) with inclusions of CNTs and tungsten disulfide (WS2) nanoparticles. The developed model can predict the thermal conductivities of multiphase composite systems more accurately than previous models by taking into account interfacial thermal resistance (Rbd) between the nanofillers and the polymer matrix, and the nanofiller orientation and morphology. The effects of (i) Rbd of CNT–PEEK and WS2–PEEK (0.0232–115.8 × 10−8 m2K/W), (ii) CNT concentration (0.1–0.5 wt%), (iii) CNT morphology (aspect ratio of 50–450, and diameter of 2–8 nm), and (iv) CNT orientation (parallel, random and perpendicular to the heat flux) on Keff of a multi-phase composite are quantified. The simulation results show that Keff of multiphase composites increases when the CNT concentration increases, and when the Rbd of CNT–PEEK and WS2–PEEK interfaces decrease. The thermal conductivity of composites with CNTs parallel to the heat flux can be enhanced ∼2.7 times relative to that of composites with randomly-dispersed CNTs. CNTs with larger aspect ratio and smaller diameter can significantly improve the thermal conductivity of a multiphase polymer composite.  相似文献   

13.
Multiwalled carbon nanotubes (CNTs) were fabricated and modified by 3-aminopropyl-triethoxysilane (APTS) solutions to study thermodynamics and regeneration of CO2 adsorption from gas streams. The CO2 adsorption capacities of CNTs and CNT(APTS) decreased with temperature indicating the exothermic nature of adsorption process while the thermodynamic analysis gave low isosteric heats of adsorption, which are typical for physical adsorption. The cyclic CO2 adsorption on CNT(APTS) showed that the adsorbed CO2 could be effectively desorbed via thermal treatment at 120 °C for 25 min while the adsorbed CO2 due to physical interaction could be effectively desorbed via vacuum suction at 0.145 atm for 30 min. If a combination of thermal and vacuum desorption was conducted at 120 °C and 0.145 atm, the time for effectively desorbing CO2 could be further shortened to 5 min. The adsorption capacities and the physicochemical properties of CNT(APTS) were preserved during 20 cycles of adsorption and regeneration. These results suggest that the CNT(APTS) can be stably employed in prolonged cyclic operation and they are thus possibly cost-effective sorbents for CO2 capture from flue gases.  相似文献   

14.
Au/Al2O3 catalyst was investigated with respect to its activity for low-temperature CO oxidation. The activity changes of the catalyst were examined after separate treatment in the following different atmosphere: (i) O2 + N2 + CO; (ii) O2 + N2 heated above 100 °C and (iii) O2 + N2 + H2O vapor. The results show that each of the treatments above may deactivate the catalyst to the different degree. The deactivation by CO oxidation is mainly due to the accumulation of carbonate-like species on the catalyst surface. The addition of H2O vapor may inhibit the deactivation effectively. The removal of hydroxyl groups at active sites during heating may be responsible for the deactivation by thermal treatment. These two kinds of deactivations are reversible. The irreversible deactivation by H2O vapor treatment is mainly caused by the growth of gold particles size.  相似文献   

15.
《Ceramics International》2016,42(14):15493-15501
High quality multi-walled carbon nanotubes (MWCNT) were grown by electron beam evaporation (EBE) under a high vacuum of 10−6 mtorr. The influence of deposition thickness on the orientation, morphology and vibrational bands of MWCNT films fabricated on tantalum (Ta) substrate was discussed. XRD patterns of the film revealed the presence of (002) preferential plane of carbon. Raman spectral analysis show the G-band Raman feature corresponding to high frequency E2g of first order mode, suggesting that CNTs were composed of crystalline carbon. SEM image of 200 nm thick MWCNT film shows well shaped homogenous fine nanotubes of length ~300 nm and diameter ~70 nm with high purity. The electrochemical performance of the MWCNTs/Ta electrodes was studied by cyclic voltammetry. The sensor prepared with optimum thickness can detect H2O2 in the wide range covering 5 µM to 0.025 mM, with the detection limit as low as 0.09 µM. The results demonstrate that the fabrication of MWCNTs/Ta electrode by EBE is a very interesting and useful approach, likely to be a focus of upcoming research efforts in electrochemical sensing.  相似文献   

16.
The effect of titanium (Ti) coating over the surface of carbon nanotubes (CNTs) on field emission characteristics was investigated. Vertically aligned CNTs were grown by inductively-coupled plasma-enhanced chemical vapor deposition (ICP-CVD). In order to reduce the screening effect of electric field due to densely packed CNTs, as-grown CNTs were partly etched back by DC plasma of N2. Ti with various thicknesses from 5 nm to 150 nm was coated on CNTs by a sputtering method. Since thick Ti coating with thickness of 100 nm or more resulted in the shape of a metal post by merging an individual CNT in a bundle, it was inadequate to a field emission application. On the other hand, thin Ti-coated CNTs with thickness of 10 nm or less showed a lower turn-on field, a higher emission current density, and improved emission uniformity compared with pristine CNTs. The improved emission performance was mainly attributed to the low work function of Ti and the reliable and lower resistance contact between CNTs and substrates.  相似文献   

17.
《Ceramics International》2015,41(7):8936-8944
Monolithic B4C ceramics and B4C–CNT composites were prepared by spark plasma sintering (SPS). The influence of particle size, heating rate, and CNT addition on sintering behavior, microstructure and mechanical properties were studied. Two different B4C powders were used to examine the effect of particle size. The effect of heating rate on monolithic B4C was investigated by applying three different heating rates (75, 150 and 225 °C/min). Moreover, in order to evaluate the effect of CNT addition, B4C–CNT (0.5–3 mass%) composites were also produced. Fully dense monolithic B4C ceramics were obtained by using heating rate of 75 °C/min. Vickers hardness value increased with increasing CNT content, and B4C–CNT composite with 3 mass% CNTs had the highest hardness value of 32.8 GPa. Addition of CNTs and increase in heating rate had a positive effect on the fracture toughness and the highest fracture toughness value, 5.9 MPa m1/2, was achieved in composite with 3 mass% CNTs.  相似文献   

18.
We reported the fabrication of a hierarchical carbon nanotube (CNT) membrane by using the 90% granulated double- or triple-walled CNTs and 10% 100 μm long multiwalled CNTs as the linker. The membrane with packing density of 420 kg/m3, excellent electrical conductance and good mechanical strength, functioned as both the electrode and current collector and allowed the weight ratio of CNTs increased up to 45–50% based on the weight of CNT, electrolyte and separator. The granulated double or triple walled CNTs, by the aggregation at high temperature etching using CO2, simultaneously exhibited high surface area and tunable pore structure and high pore volume, and were favorable for the ion transport of organic electrolyte, due to the effect of opening cap or side wall by the CO2. The CNT membrane electrode, exhibited the capacitance of 57.9 F/g and the energy density of 35 W h/kg, as operated at 4 V.  相似文献   

19.
《Fuel》2007,86(7-8):1153-1161
A carbon nanotube (CNT) was used as catalyst support impregnated with transition metal cobalt for CO oxidation at low temperature. Catalyst properties were analyzed by X-ray powder diffractometer (XRD), X-ray photoelectron spectrometer (XPS), and transmission electron microscope (TEM). Analytical results for TEM and XRD demonstrated that cobalt particles were highly dispersed on the carbon nanotube (20–30 nm) with nanosized cobalt particles (10–15 nm). These investigations indicated that Co/CNT generates about 99% of the high activity for CO conversion at 250 °C and thermally stability that is superior to Co/activated carbon (AC). The optimum reaction conditions for CO conversion were O2 concentration 3%, operation temperature 250 °C, CO concentration 5000 ppm, and space velocity 156,000 h−1. At 250 °C, CO may act as a reductant for NO reduction over Co/CNT in the presence of oxygen, whereas CO/NO = 2.5 showed that maximum NO reduction was 30%. Under H2 rich conditions, the optimum reaction temperature for CO conversion was under 300 °C, and performance of CO2 selectivity was better at 200 °C than 250 °C as the oxygen concentration increased.  相似文献   

20.
This study used an ozone/ultraviolet/hydrogen peroxide (O3/UV/H2O2) system to remove carbamazepine (CBZ) from water using a second-order response surface methodology (RSM) experiment with a five-level full-factorial central composite design (CCD) for optimization. The effects of both the primary and secondary interactions of the photocatalytic reaction variables, including O3 concentration (X1), H2O2 concentration (X2), and UV intensity (X3), were examined. The O3 concentration significantly influenced CBZ and total organic carbon (TOC) removal as well as total inorganic nitrogen ion production (T-N) (p < 0.001). However, CBZ, TOC removal, and T-N production were enhanced with increasing O3 and H2O2 concentrations up to certain levels, and further increases in O3 and H2O2 resulted in adverse effects due to hydroxyl radical scavenging by higher oxidant and catalyst concentrations. UV intensity had the most significant effect on T-N production (p < 0.001). Complete removal of CBZ was achieved after 5 min. However, only 34.04% of the TOC and 36.99% of T-N were removed under optimal concentrations, indicating formation of intermediate products during CBZ degradation. The optimal ratio of O3 (mg L? 1): H2O2 (mg L? 1): UV (mW cm? 2) were 0.91:5.52:2.98 for CBZ removal, 0.7:18.93:12.67 for TOC removal, and 0.94: 4.85:9.03 for T-N production, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号