首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(7):5374-5381
The MnO2 nanoflowers/reduced graphene oxide composite is coated on a nickel foam substrate (denoted as MnO2 NF/RGO @ Ni foam) via the layer by layer (LBL) self-assembly technology without any polymer additive, following the soft chemical reduction. The layered MnO2 NF/RGO composite is uniformly anchored on the Ni foam skeleton to form the 3D porous framework, and the interlayers have access to lots of ions channels to improve the electron transfer and diffusion. This special construction of 3D porous structure is beneficial to the enhancement of electrochemical property. The specific capacitance is up to 246 F g−1 under the current density of 0.5 A g−1. After 1000 cycles, it can retain about 93%, exhibiting excellent cycle stability. The electrochemical impedance spectroscopy measurements confirm that MnO2 NF/RGO @ Ni foam electrode has lower RESR and RCT values when compared to MnO2 @ Ni foam and RGO @ Ni foam. This study opens a new door to the preparation of composite electrodes for high performance supercapacitor.  相似文献   

2.
《Ceramics International》2017,43(4):3769-3773
MoO3/reduced graphene oxide (MoO3/RGO) composites were successfully prepared via a facile one-step hydrothermal method, and evaluated as anode materials for sodium ion batteries (SIBs). The crystal structures, morphologies and electrochemical properties of the as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge tests, respectively. The results show that the introduction of RGO can enhance the electrochemical performances of MoO3/RGO composites. MoO3/RGO composite with 6 wt% RGO delivers the highest reversible capacity of ~208 mA h g−1 at 50 mA g−1 after 50 cycles with good cycling stability and excellent rate performance for SIBs. The excellent sodium storage performance of MoO3/RGO should be attributed to the synergistic effect between MoO3 and RGO, which offers the increased electrical conductivity, the facilitated electron transfer ability and the buffering of volume expansion.  相似文献   

3.
《Ceramics International》2016,42(14):15634-15642
Sb2O3/reduced graphene oxide (RGO) composites were prepared through a facile microwave-assisted reduction of graphite oxide in SbCl3 precursor solution, and investigated as anode material for sodium-ion batteries (SIBs). The experimental results show that a maximum specific capacity of 503 mA h g−1 is achieved after 50 galvanostatic charge/discharge cycles at a current density of 100 mA g−1 by optimizing the RGO content in the composites and an excellent rate performance is also obtained due to the synergistic effect between Sb2O3 and RGO. The high capacity, superior rate capability and excellent cycling performance of Sb2O3/RGO composites demonstrate their excellent sodium-ion storage ability and show their great potential as electrode materials for SIBs.  相似文献   

4.
Manganese oxide was synthesized and dispersed on carbon nanotube (CNT) matrix by thermally decomposing manganese nitrates. CNTs used in this paper were grown directly on graphite disk by chemical vapor deposition technique. The capacitive behavior of manganese oxide/CNT composites was investigated by cyclic voltammetry and galvanostatic charge–discharge method in 1 M Na2SO4 aqueous solutions. When the loading mass of MnO2 is 36.9 μg cm 2, the specific capacitance of manganese oxide/CNT composite (based on MnO2) at the charge–discharge current density of 1 mA cm 2 equals 568 F g 1. Additionally, excellent charge–discharge cycle stability (ca. 88% value of specific capacitance remained after 2500 charge–discharge cycles) and power characteristics of the manganese oxide/CNT composite electrode can be observed. The effect of loading mass of MnO2 on specific capacitance of the electrode has also been investigated.  相似文献   

5.
《Ceramics International》2016,42(12):13519-13524
We developed a one-pot in situ synthesis procedure to form nanocomposite of reduced graphene oxide (RGO) sheets anchored with 1D δ-MnO2 nanoscrolls for Li-ion batteries. The as-prepared products were characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The electrochemical performance of the δ-MnO2 nanoscrolls/RGO composite was measured by galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. The results show that the δ-MnO2 nanoscrolls/RGO composite displays superior Li-ion battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1520 and 810 mAh g−1, respectively. After 50 cycles, the reversible discharge capacity is still maintained at 528 mAh g−1 at the current density of 100 mAh g−1. The excellent electrochemical performance is attributed to the unique nanostructure of the δ-MnO2 nanoscrolls/RGO composite, the high capacity of MnO2 and superior electrical conductivity of RGO.  相似文献   

6.
《Ceramics International》2017,43(8):6019-6023
Sb2S3/reduced graphene oxide (SSR) nanocomposites were successfully synthesized through a facile one-step hydrothermal process, as used as anode materials for sodium ion batteries (SIBs). The characterization and electrochemical performance of the as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge tests, respectively. The results show that the introduction of reduced graphene oxide (RGO) can improve the electrochemical performances of SSR nanocomposites. SSR nanocomposites with 10 wt% RGO exhibits the highest reversible capacity of 581.2 mAh g−1 at the current density of 50 mA g−1 after 50 cycles, and excellent rate performance for SIBs. The improved electrochemical performance is attributed to the smaller Sb2S3 nanoparticles dispersed on RGO crumpled structure and synergetic effects between Sb2S3 and RGO matrix, which can increase specific surface area and improve electrical conductivity, reduce sodium ion diffusion distance, and effectively buffer volume changes during cycling process.  相似文献   

7.
Although supercapacitors have higher power density than batteries, they are still limited by low energy density and low capacity retention. Here we report a high-performance supercapacitor electrode of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper (MnO2–rGO/CFP). MnO2–rGO nanocomposite was produced using a colloidal mixing of rGO nanosheets and 1.8 ± 0.2 nm MnO2 nanoparticles. MnO2–rGO nanocomposite was coated on CFP using a spray-coating technique. MnO2–rGO/CFP exhibited ultrahigh specific capacitance and stability. The specific capacitance of MnO2–rGO/CFP determined by a galvanostatic charge–discharge method at 0.1 A g−1 is about 393 F g−1, which is 1.6-, 2.2-, 2.5-, and 7.4-fold higher than those of MnO2–GO/CFP, MnO2/CFP, rGO/CFP, and GO/CFP, respectively. The capacity retention of MnO2–rGO/CFP is over 98.5% of the original capacitance after 2000 cycles. This electrode has comparatively 6%, 11%, 13%, and 18% higher stability than MnO2–GO/CFP, MnO2/CFP, rGO/CFP, and GO/CFP, respectively. It is believed that the ultrahigh performance of MnO2–rGO/CFP is possibly due to high conductivity of rGO, high active surface area of tiny MnO2, and high porosity between each MnO2–rGO nanosheet coated on porous CFP. An as-fabricated all-solid-state prototype MnO2–rGO/CFP supercapacitor (2 × 14 cm) can spin up a 3 V motor for about 6 min.  相似文献   

8.
Graphene nanoribbons (GNRs) with tubular shaped thin graphene layers were prepared by partially longitudinal unzipping of vapor-grown carbon nanofibers (VGCFs) using a simple solution-based oxidative process. The GNR sample has a similar layered structure to graphene oxide (GO), which could be readily dispersed in isopropyl alcohol to facilitate electrophoretic deposition (EPD). GO could be converted to graphene after heat treatment at 300 °C. The multilayer GNR electrode pillared with open-ended graphene tubes showed a higher capacitance than graphene flake and pristine VGCF electrodes, primarily due to the significantly increased surface area accessible to electrolyte ions. A GNR electrode with attached MnO2 nanoparticles was prepared by EPD method in the presence of hydrated manganese nitrate. The specific capacitance of GNR electrode with attached MnO2 could reach 266 F g−1, much higher than that of GNR electrode (88 F g−1) at a discharge current of 1 A g−1. The hydrophilic MnO2 nanoparticles attached to GNRs could act as a redox center and nanospacer to allow the storage of extra capacitance.  相似文献   

9.
A highly efficient method has been reported to fabricate the reduced graphene oxide/MnO2 (RGO/MnO2) hybrid materials, a kind of catalysts for oxidative decomposition of methylene blue (MB). The pristine suspension of graphene oxide/manganese sulfate (GO/MnSO4) produced by the modified Hummers method is in situ transformed into GO/MnO2 composites in combination with KMnO4, and then further into RGO/MnO2 composites by means of glucose-reduction. It is found that MnO2 nanoparticles with the size of 20–30 nm are uniformly distributed in the structure of RGO. A series of composites with different mass ratios of RGO to MnO2 has been proved superior catalytic activities, much higher than that of the bare MnO2 for decomposition of MB dye in the presence of H2O2. Typically, 50 mL of MB (50 mg L−1) can be completely decolorized and nearly 66% mineralized at 50 °C in 5 min with 10 mg of the RGO/MnO2 hybrid. According to the adsorption–oxidation–desorption mechanism, the high activity of RGO/MnO2 composites for decomposition of MB is closely related to the positive synergistic effect of RGO and MnO2 with the assistance of H2O2.  相似文献   

10.
Micro/meso-porous reduced graphite oxide (MMRGO) nanosheets were produced using precursor carbide-derived carbon (CDC), which was produced at a high temperature of 1200 °C, through a massive wet chemistry synthetic route involving graphite oxidation and microwave reduction. X-ray diffraction (XRD) and transmission electron microscopy (TEM) show that the MMRGO nanosheets were fabricated with 2–3 layers and ripple-like corrugations. N2 sorption isotherms confirmed that micro/meso-pores coexisted in the RGO sample from CDC. In the anode application of Li-ion batteries, this RGO sample had an enhanced capacity performance at the 0.1 C rate and 1 C rate, with ∼1200 mAh g−1 at the 100th cycle and ∼1000 mAh g−1 at the 200th cycle, respectively.  相似文献   

11.
Nanofiber fabric is firstly introduced to replace common microfiber fabrics as the platform for flexible supercapacitors. Nanofiber and microfiber electrodes can be simply fabricated using a dipping process that impregnates reduced graphene oxide (RGO) nanosheets into electrospun polyamide-66 (PA66) nanofiber and microfiber fabrics. RGO nanosheets are tailored to various sizes and only RGO with a medium diameter of 250–450 nm (denoted as M-RGO) can effectively penetrate the pores of nanofiber fabrics for constructing smooth conductive paths within PA66 nanofiber fabrics. The synergistic effect between suitable sizes of RGO nanosheets and nanofiber fabrics with a high specific area provides a symmetric supercapacitor composed of M-RGO/PA66 nanofiber fabric electrodes with high-volume and high-area specific capacitance (CS,V and CS,A, equal to 38.79 F cm−3 and 0.931 F cm−2 at 0.5 A g−1, respectively), which are much larger than that of a symmetric supercapacitor composed of RGO/PA66 microfiber fabric electrodes (8.52 F cm−3 and 0.213 F cm−2 at 0.5 A g−1). The effect of impregnating nanofiber fabrics with suitably sized RGO to promote CS,V and CS,A of flexible supercapacitors has been demonstrated.  相似文献   

12.
The paper reports on the preparation of reduced graphene oxide (rGO) modified with nanodiamond particles composites by a simple solution phase and their use as efficient electrode in electrochemical supercapacitors. The technique relies on heating aqueous solutions of graphene oxide (GO) and nanodiamond particles (NDs) at different ratios at 100 °C for 48 h. The morphological properties, chemical composition and electrochemical behavior of the resulting rGO/NDs nanocomposites were investigated using UV/vis spectrometry, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM) and electrochemical means. The electrochemical performance, including the capacitive behavior of the rGO/NDs composites were investigated by cyclic voltammetry and galvanostatic charge/discharge curves at 1 and 2 A g−1 in 1 M H2SO4. The rGO/ND matrix with 10/1 ratio displayed the best performance with a specific capacitance of 186 ± 10 F g−1 and excellent cycling stability.  相似文献   

13.
Sodium ion battery is a promising electrical energy storage system for sustainable energy storage applications due to the abundance of sodium resources and their low cost. In this communication, the electrochemical properties of sodium ion storage in reduced graphene oxide (RGO) were studied in an electrolyte consisting of 1 M NaClO4 in propylene carbonate (PC). The experimental results show that the RGO anode allowed significant sodium ion insertion, leading to higher capacity at high current density compared to the previously reported results for carbon materials. This is due to the fact that RGO possesses higher electrical conductivity and is a more active host, with large interlayer distances and a disordered structure, enabling it to store a higher amount of Na ions. RGO anode exhibits high capacity combined with long-term cycling stability at high current densities, leading to reversible capacity as high as 174.3 mAh g−1 at 0.2 C (40 mA g−1), and even 93.3 mAh g−1 at 1 C (200 mA g−1) after 250 cycles. Furthermore, RGO could yield a high capacity of 141 mAh g−1 at 0.2 C (40 mA g−1) over 1000 cycles.  相似文献   

14.
《Ceramics International》2017,43(14):10873-10880
MnO/reduced graphite oxide (MnO/RGO) composite films with three dimensionally porous structures have been synthesized by an improved electrostatic spray deposition setup and their microstructure and electrochemical properties have been characterized by X-ray diffraction, scanning electron microscopy, thermal gravimetric, Raman spectrometry and galvanostatic cell cycling. The results show that the structure and electrochemical performance of the electrode film are influenced significantly by the RGO content. The three dimensionally porous structure collapse does not occur in the MnO/RGO thin films for a RGO content lower than 16.58 wt%, the 16.58 wt% reduced graphite oxide content being optimal. Such an improvement in the cycling performance (772 mAh g−1 after 100 cycles at 1 C) and rate capability (425 mAh g−1 at 6 C) might be attributed to the excellent microstructure and electrical conductivity of MnO/reduced graphite oxide composite film electrodes.  相似文献   

15.
The electrospinning of polyacrylonitrile (PAN) with a polyaniline and graphene sol–gel mixture produced uniform, smooth fibers with an average diameter of 0.3 μm. These electrospun fibers were stabilized for 2 h at 200 °C and then carbonized at 800 °C for 5 h. Composites were prepared by depositing Ni(OH)2 on the carbon nanofibers (CNFs) and calcining them at different temperatures. The composites were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The effect of the calcination temperatures on the electrochemical properties was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The specific capacitance (SC) was found to be highest (738 F g−1) at a calcination temperature of 400 °C. The charge transfer resistance (Rp) decreased as the calcination temperature was increased. However, the electrical double layer capacitance (EDLC) increased with an increase in the calcination temperature. The EDLC increased from 0.144 F g−1 at a calcination temperature of 100 °C to 485 F g−1 at a calcination temperature of 500 °C.  相似文献   

16.
《Ceramics International》2017,43(11):8440-8448
MnO2 nanoflower is prepared by electrochemical conversion of Mn3O4 obtained by heat treatment of spent zinc‒carbon batteries cathode powder. The heat treated and converted powders were characterized by TGA, XRD, FTIR, FESEM and TEM techniques. XRD analyses show formation of Mn3O4 and MnO2 phases for the heat treated and converted powders, respectively. FESEM images indicate the formation of porous nanoflower structure of MnO2, while, condensed aggregated particles are obtained for Mn3O4. The energy band gap of MnO2 is obtained from UV‒Vis spectra to be 2.4 eV. The electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge‒discharge and electrochemical impedance techniques using three-electrode system. The specific capacitance of MnO2 nanoflower (309 F g−1 at 0.1 A g−1) is around six times higher than those obtained from the heat treated one (54 F g−1 at 0.1 A g−1). Moreover, it has high capacitance retention up to 93% over 1650 cycles. Impedance spectra of MnO2 nanoflower show very small resistances and high electrochemical active surface area (340 m2 g−1). The present work demonstrates a novel electrochemical approach to recycle spent zinc-carbon batteries into high value supercapacitor electrode.  相似文献   

17.
《Ceramics International》2015,41(6):7402-7410
Flexible composites with manganese oxides (MnOx) nanocrystals encapsulated in electropun carbon nanofibers were successfully fabricated via a simple and practical combination of electrospinning and carbonization process. The as-formed MnOx/carbon nanofibers composites have a rough surface with MnOx nanoparticles well embedded in the carbon nanofibers backbones. When used as electrodes for supercapacitor, the resulting MnOx/carbon nanofiber composites exhibit good electrochemical performance with a specific capacitance of 174.8 F g−1 at 2 mV s−1 in 0.5 M Na2SO4 electrolyte, a good rate capability at high current density and long-term cycling stability. It is expected that such freestanding composites could be promising electrodes for high-performance supercapacitors.  相似文献   

18.
《Ceramics International》2016,42(15):16666-16670
NiFe2O4/reduced graphene oxide (NFO/RGO) nanocomposites were prepared by a facile one-step hydrothermal method and used as anode for sodium ion batteries (SIBs). The crystal structures, morphologies and electrochemical properties of as-prepared samples were evaluated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests. The results show that NFO/RGO-20 (20 wt%) delivers the highest reversible capacity of ~450 mA h g−1 at 50 mA g−1 after 50 cycles with good cycling stability. The excellent sodium storage performance of NFO/RGO should be attributed to the synergistic effect between NFO and RGO to form conductive network structure, which offers the increased specific surface area, the facilitated electron transfer ability and the buffering of volume expansion.  相似文献   

19.
Reduced graphene oxide (rGO) tethered with maghemite (γ-Fe2O3) was synthesized using a novel modified sol–gel process, where sodium dodecylbenzenesulfonate was introduced into the suspension to prevent the undesirable formation of an iron oxide 3D network. Thus, nearly monodispersed and homogeneously distributed γ-Fe2O3 magnetic nanoparticles could be obtained on surface of graphene sheets. The utilized thermal treatment process did not require a reducing agent for reduction of graphene oxide. The morphology and structure of the composites were investigated using various characterization techniques. As-prepared rGO/Fe2O3 composites were utilized as anodes for half lithium ion cells. The 40 wt.%-rGO/Fe2O3 composite exhibited high reversible capacity of 690 mA h g−1 at current density of 500 mA g−1 and good stability for over 100 cycles, in contrast with that of the pure-Fe2O3 nanoparticles which demonstrated rapid degradation to 224 mA h g−1 after 50 cycles. Furthermore, the composite showed good rate capability of 280 mA h g−1 at 10C (∼10,000 mA g−1). These characteristics could be mainly attributed to both the use of an effective binder, poly(acrylic acid) (PAA), and the specific hybrid structures that prevent agglomeration of nanoparticles and provide buffering spaces needed for volume changes of nanoparticles during insertion/extraction of Li ions.  相似文献   

20.
Hybrid films of polyaniline (PANI) and manganese oxide (MnOx) were obtained through potentiodynamic deposition from solutions of aniline and MnSO4 at pH 5.6. The hybrid films demonstrated characteristic redox behaviors of PANI in acidic aqueous solution. Characterization of the hybrid films by XRD indicated the amorphous nature of MnOx in the films in which manganese existed in oxidation states of +2, +3 and +4, based on XPS measurement. Hybrid film of PANI and MnOx, PM120 obtained from the solution of 0.1 M aniline and 120 mM Mn2+ displayed a well opened nanofibrous structure which showed an 44% increase in specific capacitance from that of PANI (408 F g?1) to 588 F g?1, measured at 1.0 mA cm?2 in 1 M NaNO3 (pH 1). The hybrid film kept more than 90% of its capacitance after 1000 charging-discharging cycles, with a coulombic efficiency of 98%. The specific capacitance of a symmetric capacitor using PM120 as the electrodes is 112 F g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号