首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
粉煤灰水泥石碳化性能的化学分析   总被引:2,自引:0,他引:2  
开发了一种自制测量装置。利用该装置,沿碳化深度方向,分层测定了碳化粉煤灰水泥石中CaCO3的含量。绘制了"CaCO3含量–深度"曲线。根据曲线特点,定义了完全碳化区、部分碳化区、未碳化区等概念和碳化程度、碳化速度等特征指标。研究了粉煤灰掺量、水胶比、龄期、养护条件、碳化前烘干处理、碳化时间、碳化湿度等对粉煤灰水泥石碳化性能的影响。结果表明:粉煤灰掺量越大,水胶比越高,龄期越短,养护环境越干燥,碳化前试件越干燥,粉煤灰水泥石的抗碳化性能越差;碳化时间越长,碳化湿度越低,粉煤灰水泥石的碳化程度越高;但碳化速度随碳化时间的增长而减慢。这些结论与文献报道的用其他方法得到的公认的结论一致。本方法还得到了更加深入的研究结果,即:粉煤灰掺量越大、粉煤灰水泥石中可碳化物质的相对含量越低;水胶比、龄期、养护条件、碳化时间、碳化湿度基本不改变粉煤灰水泥石中可碳化物质的相对含量;龄期、养护条件可改变未碳化粉煤灰水泥石中碳酸盐的相对含量。  相似文献   

2.
Hydration of portland cement pastes containing three types of mineral additive; fly ash, ground-granulated slag, and silica fume was investigated using differential thermal analysis, thermogravimetric analysis (DTA/TGA) and isothermal calorimetry. It was shown that the chemically bound water obtained using DTA/TGA was proportional to heat of hydration and could be used as a measure of hydration. The weight loss due to Ca(OH)2 decomposition of hydration products by DTA/TGA could be used to quantify the pozzolan reaction. A new method based on the composition of a hydrating cement was proposed and used to determine the degree of hydration of blended cements and the degree of pozzolan reaction. The results obtained suggested that the reactions of blended cements were slower than portland cement, and that silica fume reacted earlier than fly ash and slag.  相似文献   

3.
The carbonation of Portland cement, metakaolin and limestone mortars has been investigated after hydration for 91 days and exposure to 1% (v/v) CO2 at 20 °C/57% RH for 280 days. The carbonation depths have been measured by phenolphthalein whereas mercury intrusion porosimetry (MIP), TGA and thermodynamic modeling have been used to study pore structure, CO2 binding capacity and phase assemblages. The Portland cement has the highest resistance to carbonation due to its highest CO2 binding capacity. The limestone blend has higher CO2 binding capacity than the metakaolin blends, whereas the better carbonation resistance of the metakaolin blends is related to their finer pore structure and lower total porosity, since the finer pores favor capillary condensation. MIP shows a coarsening of the pore threshold upon carbonation for all mortars. Overall, the CO2 binding capacity, porosity and capillary condensation are found to be the decisive parameters governing the carbonation rate.  相似文献   

4.
This paper deals with two experimental methods to determine carbonation profiles in concrete. Gammadensimetry is a non-destructive test method able to measure the total penetrated CO2 and to monitor the carbonation process during laboratory accelerated tests. The second method is thermogravimetric analysis (TGA) supplemented with chemical analysis (CA): as TGA is performed on a small mortar sample not representative of the whole tested concrete, CA is needed to proportion the sample cement content, the sand content and to correct the TGA results becoming thus representative of the concrete mix. Consequently, TGA-CA gives accurate quantitative profiles in carbonated cementitious materials. Results are reported for an ordinary Portland cement paste, and three concrete mixes, containing siliceous or calcareous aggregates. The CO2 mass loss due to carbonation occurs from 530 to 950 °C, which overlaps the temperature range of the calcareous aggregate dissociation. To solve the problem, the origin of CaCO3 is carefully analyzed. Calcium carbonate ensuing from C-S-H carbonation dissociates in a lower temperature range than the more stable one ensuing from portlandite carbonation and from limestone, which enables C-S-H carbonation to be distinguished from calcareous aggregates. Therefore, TGA-CA allows the CaCO3 ensuing from C-S-H carbonation to be measured and to calculate the portlandite degraded by carbonation. Thus, the total calcium carbonates profiles can be deduced even when calcareous aggregates is present in the concrete mix.  相似文献   

5.
Decalcification shrinkage of cement paste   总被引:3,自引:0,他引:3  
Decalcification of cement paste in concrete is associated with several modes of chemical degradation including leaching, carbonation and sulfate attack. The primary aim of the current study was to investigate the effects of decalcification under saturated conditions on the dimensional stability of cement paste. Thin (0.8 mm) specimens of tricalcium silicate (C3S) paste, white portland cement (WPC) paste, and WPC paste blended with 30% silica fume (WPC/30% SF) were decalcified by leaching in concentrated solutions of ammonium nitrate, a method that efficiently removes calcium from the solid while largely preserving silicate and other ions. All pastes were found to shrink significantly and irreversibly as a result of decalcification, particularly when the Ca/Si ratio of the C-S-H gel was reduced below ∼ 1.2. Since this composition coincides with the onset of structural changes in C-S-H such as an increase in silicate polymerization and a local densification into sheet-like morphologies, it is proposed that the observed shrinkage, here called decalcification shrinkage, is due initially to these structural changes in C-S-H at Ca/Si ∼ 1.2 and eventually to the decomposition of C-S-H into silica gel. In agreement with this reasoning, the blended cement paste exhibited greater decalcification shrinkage than the pure cement pastes due to its lower initial Ca/Si ratio for C-S-H gel. The similarities in the mechanisms of decalcification shrinkage and carbonation shrinkage are also discussed.  相似文献   

6.
Blended cements prepared with two fly ashes were used as matrices in glass fiber reinforced cement (GRC) composites in an attempt to improve their durability. The hydrated matrices from the two blended cements investigated here had similar strength and composition. Both fly ashes reduced the Ca(OH)2 content to the same extent but in both cases the pH level was only slightly reduced compared to the portland cement matrix. In spite of these similarities, the GRC prepared with one fly ash showed considerable improvement in durability while the other one had only a small positive effect. SEM observations indicated that the improved durability in one case was associated with modification in the microstructure of the hydration products deposited in between the glass filaments, resulting in a much more open structure compared to that of portland cement matrix or the other blended cement. It is therefore suggested that the potential of the blended cement matrix to improve the durability of GRC is associated with its ability to modify the microstructure of the paste at the glass interface. This characteristic is not necessarily related to the overall composition of the blended cement matrix and to the reactivity of fly ash with Ca(OH)2.  相似文献   

7.
The preventive effect of tuff, fly ash and blast furnace slag on alkali-silica reaction has been investigated. Results show that by same amount of addition the order of effectiveness is tuff > fly ash > slag. It is suggested that the preventive effects of the admixtures are related to their acidities, the more the content of the acid oxides in the admixture, the better is the latter's preventive effect. Experiments prove that the addition of 10% CaO to the blended cement increases the expansion caused by alkali-silica reaction. It is obvious that the preventive effect of admixture is also related to the Ca(OH)2 content of the cement paste, i.e., to the basicity of the blended cement. Low basicity is favourable to the preventive effect. The authors conceive that the concentration of the K+ and Na+ ions on the surface of the admixture particles may also constitute one of the causes of the preventive effect.  相似文献   

8.
The project studies the influence of fly ash and slag replacement on the carbonation rate of the concrete. The experimental work includes samples of pure Portland cement concrete (CEM I 42,5 R), blast-furnace slag concrete (CEM III-B), and fly ash blended concrete. To reveal the effect of curing on carbonation rate, the concretes were exposed to various submerged curing periods during their early ages. After that, the samples were subsequently exposed in the climate room controlling 20 °C and 50% RH until the testing date when the samples had an age of 5 months. Then, the accelerated carbonation test controlling the carbon dioxide concentration of 3% by volume, with 65% relative humidity were started to perform. The depth of carbonation can be observed by spraying a phenolphthalein solution on the fresh broken concrete surface. Finally, according to Fick's law of diffusion theoretical equations are proposed as a guild for estimating the carbonation rate of fly ash and blast-furnace slag concretes exposed under natural conditions from the results from accelerated carbonation tests.  相似文献   

9.
采用压汞法对不同龄期粉煤灰-水泥浆体的孔分形结构进行了实验研究,测定了复合浆体孔体积分形维数,探讨了孔体积分形维数与孔隙率,孔表面积、平均孔径、孔分布及宏观力学性能的关系。实验结果表明:粉煤灰-水泥浆体的孔结构具有明显的分形特征,孔体积分形维数在3.3~3.5之间;孔体积分形维数越大,浆体的孔径越小、孔隙率越低,孔表面积越大,小于20nm的微孔越多,大于100nm的大孔越少,而且复合体系的抗压及抗折强度也越高。  相似文献   

10.
张世华 《硅酸盐通报》2018,37(1):210-214
采用石灰石粉对低品位粉煤灰进行煅烧改性,利用X射线衍射、扫描电镜和能谱分析等方法对改性粉煤灰的矿物组成和化学组成进行表征.同时测定了掺改性粉煤灰的水泥浆体的抗压强度和自收缩,并采用背散射扫描电镜和压汞测孔仪研究了掺改性粉煤灰水泥浆体的微观结构.结果表明,粉煤灰经煅烧改性生成了水硬性矿物β-C2S,水化可生成CSH凝胶,改善了等外粉煤灰颗粒与水泥基体的界面粘接,降低了复合水泥浆体的孔隙率和自收缩,提高了复合水泥浆体的强度.  相似文献   

11.
The effect of mix proportion, leachant pH, curing age, carbonation and specimen making method etc. on the leaching of heavy metals and Cr(VI) in fly ash cement mortars and cement-solidified fly ashes has been investigated. In addition, a method for reducing the leaching of Cr(VI) from cement-solidified fly ashes is proposed. The results mainly indicate that: (1) either Portland cement or fly ash contains a certain amount of heavy and toxic metals, and the leaching of them from hardened fly ash incorporated specimens exists and is increased with fly ash addition and water to cement ratio; (2) the leachability of some heavy metals is greatly dependent on leachant pH; (3) when carbonation of cement mortars occurs the leaching of chromium ions is increased; (4) the amount of heavy metals leached from cement-solidified fly ashes depends more on the kind of fly ash than their contents in fly ash; and (5) with ground granulated blast furnace slag addition, the leaching of Cr(VI) from solidified fly ashes is decreased.  相似文献   

12.
张文之  刘敏 《硅酸盐通报》2017,36(8):2619-2624
通过加速碳化试验,系统研究了不同养护条件和粉煤灰掺量的大掺量粉煤灰混凝土碳化规律.并利用扫描电镜和压汞法研究了大掺量粉煤灰混凝土碳化前后的微观形貌和孔结构变化.结果表明:经标准养护后的粉煤灰混凝土的抗碳化能力大于经自然养护后的粉煤灰混凝土的抗碳化能力;随着粉煤灰掺量的增加,混凝土抗碳化能力减小;标准养护下粉煤灰混凝土孔隙率相比于其在自然养护下的孔隙率降低了19.6%;碳化后浆体密实度增加,孔径细化,孔隙率降低31.4%.  相似文献   

13.
磨细矿物掺合料对水泥硬化浆体孔结构及砂浆强度的影响   总被引:6,自引:1,他引:5  
采用压汞法研究了钢渣、矿渣、粉煤灰单掺或复掺对水泥硬化浆体孔结构的影响.同时还研究了掺合料单掺或复掺对水泥砂浆抗压强度的影响.结果表明:掺合料单掺或复掺对早期水泥硬化浆体的孔结构有一定的劣化作用;水化后期,矿渣与钢渣均明显降低了水泥硬化浆体的孔隙率,矿渣与粉煤灰均明显降低了水泥硬化浆体的中值孔径并改善了水泥石的孔径分布,掺合料复掺对改善水泥硬化浆体的孔结构有积极作用,尤其是掺合料三元复合可取得最佳的效果.3种掺合料降低水泥硬化浆体孔隙率能力的大小顺序为:矿渣>钢渣>粉煤灰.3种掺合料降低水泥硬化浆体孔径并改善孔径分布能力的大小顺序为:矿渣>粉煤灰>钢渣.掺合料降低了水泥砂浆早期的抗压强度,却增加了水泥砂浆90 d的抗压强度.掺合料的活性大小顺序为:矿渣>钢渣>粉煤灰.  相似文献   

14.
This paper reports the results of investigation to assess the suitability of volcanic ash (VA) and pumice powder (VPP) for blended cement production. Tests were conducted on cement where Portland cement (PC) was replaced by VA and VPP within the range of 0 to 50%. The physical and chemical properties of VA and VPP were critically reviewed to evaluate the possible influences on cement properties. The investigation included testing on both fresh and hardened states of cement paste. The standard tests conducted on different PC-VA and -VPP mixtures provided encouraging results, comparable to those for fly ash (FA) cement, and showed good potential of manufacturing blended Portland volcanic ash cement (PVAC) and Portland volcanic pumice cement (PVPC) with higher setting time and low heat of hydration using up to 20% replacement.  相似文献   

15.
Hydration of fly ash cement   总被引:1,自引:0,他引:1  
It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO2 generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.  相似文献   

16.
The microstructure of cement paste of 50/50 mixes of cement/quartz and cement/fly ash, both ground in a special mill [energetically modified cement (EMC) process] and simply blended, have been studied under sealed curing conditions. The grinding process reduced the size of both cement grains and quartz/fly ash markedly and created flaky agglomerates of high inner surface for the finer particles. EMCs had much higher degree of hydration at 1 day, but similar as blends at 28 days. The pores were much finer for EMC paste due to smaller particles as also reflected in the strength. The morphology of calcium hydroxide in EMC paste appeared more mass like. Pozzolanic reaction was insignificant for quartz in EMC, but increased for fly ash. Thus, improved performance of EMC versus OPC can be explained by increased early hydration and extensive pore size refinement of the hardened binder resulting in reduced permeability and diffusivity for concrete.  相似文献   

17.
本文利用差热分析、X射线衍射、扫描电镜等手段研究了纳米Si O_2和MXene对粉煤灰水泥水化性能的影响。结果表明,单掺纳米Si O_2能够促进粉煤灰水泥早期水化,提高水化开始时的放热速率,并使粉煤灰水泥浆体更加密实;而单掺MXene、复掺纳米Si O_2和MXene对粉煤灰水泥后期水化的促进作用比较明显,能够促进水泥中期强度增长。  相似文献   

18.
A scanning electron microscope (SEM) point-counting technique was employed to study the hydration of plain portland and blended cement pastes containing fly ash or slag. For plain portland cement pastes, the results for the degree of cement hydration obtained by the SEM point-counting technique were consistent with the results from the traditional loss-on-ignition (LOI) of nonevaporable water-content measurements; agreement was within ±10%. The standard deviation in the determination of the degree of cement hydration via point counting ranged from ±1.5% to ±1.8% (one operator, one sample). For the blended cement pastes, it is the first time that the degree of hydration of cement in blended systems has been studied directly. The standard deviation for the degree of hydration of cement in the blended cement pastes ranged from ±1.4% to ±2.2%. Additionally, the degrees of reaction of the mineral admixtures (MAs) were also measured. The standard deviation for the degree of fly ash reaction was ±4.6% to ±5.0% and ±3.6% to ±4.3% for slag. All of the analyses suggest that the SEM point-counting technique can be a reliable and effective analysis tool for use in studies of the hydration of blended cement pastes.  相似文献   

19.
In the present the paper, various tests are described using white and ordinary Portland cement blended with fly ash and a slag to assess their effect on reinforcement corrosion. Natural and accelerated chloride diffusion, carbonation and corrosion tests were performed. The results indicate that the most resistant cement against chloride attack is the slag cement which on the other hand, performed as the less resistant to carbonation in the conditions of the test. The most resistant to carbonation is the ordinary Portland cement having the higher portlandite content. As there is the demand to link microstructure and observed performance of the different cementitious materials, an attempt is made. The work emphasizes the effect of mineral additions on the corrosion process in order to collect systematic information about the controlling parameters in the different periods of the service life of reinforced concrete structures.  相似文献   

20.
The effect of the addition of lignite fly ash, natural greek pozzolan and blastfurnace slag to ordinary portland cement on the carbonation of mortar specimens was studied in a programme of long-term exposure to the atmosphere in relation to the evolution of their porous structure. Additions of 4%, 15% and 30% or 50% of the admixtures to the cement were tested. The carbonation depth and the specific pore volume of the cover were measured. The additions of 4% pozzolan, and 4% and 15% fly ash, and 4% and 15% slag did not influence the porosity and the carbonation of the specimens compared to reference specimens without admixtures. Higher additions resulted in an increase of the above parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号