共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
为提高月径流预测精度,提出了变分模态分解(VMD)和麻雀搜索算法(SSA)与长短期记忆神经网络(LSTM)相耦合,建立了月径流预测模型(VMD-SSA-LSTM)。首先利用VMD对历史径流数据进行分解,然后依据SSA对LSTM的参数进行寻优,并将分解出的月径流分量输入到LSTM神经网络,最后将每个分量的预测值相加,得到月径流预测值,并以福建池潭水库1950~2019年的月径流数据对模型进行验证。结果表明,与LSTM、VMD-LSTM模型相比,VMD-SSA-LSTM模型的预测精度更高,为开展月径流预测工作提供了一种新的选择。 相似文献
4.
根据径流变化特性,提出一种基于小波-ANFIS的水库月径流组合预报模型.利用Mallat算法对月径流序列进行多尺度分解,得到对应尺度下的低频信号和高频信号,分别对这两种信号建立了ANFIS模型进行预报,将各模型预报结果叠加作为原径流的预报值.该模型用于淮河支流沙河上游年月径流变化幅度较大的昭平台水库月径流预报中,结果表明所建模型能够较好地预报原始信号的趋势,预报精度比单一ANFIS 预报模型有较大改善,但仍有待提高.对导致这一现象的主要原因进行了分析,并对模型的改进提出了合理化建议. 相似文献
5.
提高径流预测的适用性对水资源的合理开发和高效利用具有重要意义。针对传统点预测方法无法有效描述预测结果的不确定性问题,提出了基于VMD-GRU和非参数核密度估计的月径流区间预测方法。首先采用变分模态分解(VMD)将月径流序列分解为一系列相对平稳的子序列,然后利用门控循环单元(GRU)分别预测各子序列,叠加得到最终的点预测结果,最后在点预测的基础上,应用非参数核密度估计进行月径流区间预测,并将提出的VMD-GRU模型与GRU、极点对称模态分解-门控循环单元(ESMD-GRU)和完全集合经验模态分解-门控循环单元(CEEMDAN-GRU)模型进行对比。结果表明,该模型点预测精度明显高于其他模型,同时非参数核密度估计为径流区间预测提供了合理的波动范围,可为管理决策提供参考。 相似文献
6.
7.
为探讨小波变换中小波基函数对模型预报精度的影响,选取三个小波基函数haar、db10、sym8对原始序列进行小波变换预处理,并分别建立人工神经网络模型(ANN)和基于不同小波基函数的W-ANN(haar)、W-ANN(db10)、W-ANN(sym8)模型进行预报。以三峡水库月径流为例,采用纳什效率系数、平均绝对误差及平均相对误差对建立模型的预报效果进行比较。结果显示,采用三个小波基函数haar、db10、sym8对数据进行小波变换预处理后的模型精度均得到了不同程度提高,W-ANN(sym8)模型在各项指标上表现最好。表明小波基函数的选择对模型预报精度结果影响较大,选择合适的小波基函数至关重要。 相似文献
8.
为提高河川径流的中长期预报精度并延长其预见期,采用小波分析充分提取有用信息,基于BP神经网络和GRNN神经网络,构建了两种小波神经网络耦合模型,测试了Daubechies族中9种母波函数对模型模拟效果的影响,并采用合格率(Q_(QR))、平均相对误差(M_(MPRE))、均方根误差(R_(RMSE))和确定性系数(N_(NSE))等指标评价了模型精度。将该模型应用于金沙江流域向家坝水文站未来1~5个月的径流预报,结果显示,相比于传统BP和GRNN模型,耦合模型具有明显优势,且基于小波分析的BP模型预报结果更接近实测值,预报精度更高,其未来4个月的平均相对误差在±20%以内。表明小波分析方法能充分挖掘隐藏在原始数据中的有用信息,可有效提高耦合模型的预报精度延长预见期,在径流预测方面有明显的优越性。 相似文献
9.
为提高径流预报精度,采用单相关系数法挑选预报因子,建立了基于遗传算法的参数投影寻踪回归径流预报模型,利用该模型对雅砻江二滩水电站月平均流量进行了预报。结果表明,与BP神经网络模型预报结果相比,投影寻踪回归模型具有更好的预报结果和更高的预报精度。 相似文献
10.
为保障向昆明市供水的掌鸠河引水供水工程水源地(云龙水库(含双化水库))水源充足,对云龙水库上游掌鸠河天然径流量进行精确预报就显得十分必要。为此,采用Copula函数构建相邻月径流之间的联合分布函数,给出了基于Copula函数的月径流预测方法及步骤,并将其应用于云龙水库上游掌鸠河天然径流量预测中。结果表明,2011~2013年各月的天然流量均处于预测流量的上、下限之间;2011~2013年各月径流量预测值的相对误差多为5%~15%。显然基于Copula函数的月径流预测精度较高,可为云龙水库(含双化水库)水资源调度及水资源优化配置、防洪抗旱提供参考依据。 相似文献
11.
12.
为进一步提高径流预报精度、增加预报结果的可靠性,提出了一种将遗传算法(GA)与层次分析法(AHP)相结合的优化组合预报权值方法(GA-AHP法),就是将小波分析法(WA)分别与自回归(AR)模型、人工神经网络(ANN)模型、支持向量机(SVM)模型进行耦合,选取MARE、SPR、REL、CPX四个评价指标量化单一模型的预报精度、泛化能力、结果可靠性、模型复杂度,依据GA-AHP法率定各模型的权值并进行组合预报。实例应用结果表明,该组合方法的预报精度更高,预报结果更可靠,对非一致性径流序列具有更强的适应性。 相似文献
13.
针对径流序列不稳定导致预测精度不高的问题,提出一种基于变分模态分解(VMD)和蝗虫优化算法(GOA)优化相关向量机(RVM)的组合径流预测模型。首先对原始非平稳的径流序列采用VMD得到若干个相对稳定的分量序列,再分别建立RVM预测模型,并采用GOA优化RVM中核函数的参数,最后累加所有分量的预测值得到径流序列的预测值。实例结果发现,较传统的BP神经网络、支持向量机及基于经验模态分解的支持向量机等模型,该模型预测精度更高,预测结果能为水电站的经济运行、水资源的有效利用等提供决策依据。 相似文献
14.
为了提高锂离子电池荷电状态(SOC)的估计精度,文中采用基于高斯过程回归(GPR)机器学习的锂离子电池数据驱动方法,首先选取数据集,将电池测量参数电流和电压作为模型的输入向量,SOC作为模型的输出向量来训练模型,为了提高模型精度,文中改进了高斯过程回归模型.将上一时刻估计的SOC值加入到移动窗口中,并与电流和电压一起作... 相似文献
15.
针对高拱坝变形问题,提出应用粒子群算法优化高斯过程回归参数的高拱坝变形预测模型,基于高斯过程回归可将低维非线性关系通过核函数投射到高维线性空间的特点,利用高斯过程回归模型来表征水压、温度、时效等因素与坝体变形之间的非线性关系;同时针对迭代求解高斯过程回归模型的超参数效率低的问题,采用粒子群优化算法全局搜索模型超参数,提高了求解效率。对某高拱坝径向位移的拟合预测结果表明,粒子群优化高斯过程回归模型能较好地表征输入因子与变形之间的关系,预测坝体变形,误差在工程允许范围内,可应用于坝体变形预测分析中。 相似文献
16.
高精度的电池荷电状态估计是电动汽车电池管理系统的关键技术之一,其估计精度直接影响能量管理效率和汽车的续航里程。传统的滤波方法基于模型来估计电池SOC,但难以建立锂离子电池精确的数学模型。针对此问题,提出一种基于高斯过程回归的无迹卡尔曼滤波(UKF)锂离子电池SOC估计方法,使用高斯过程回归在有限的训练数据下建立等效电路模型的测量方程,在UKF和高斯过程回归之间建立关联。该模型能够充分联合利用现有实验数据和被预测实时状态数据,实现SOC估计。结果表明,与传统UKF相比,基于高斯过程回归的UKF算法具有较高精确性。 相似文献
17.
18.
19.
针对BP神经网络在径流预报中易陷入局部最优解的缺陷及智能优化算法的优势,引入改进的杂草算法优化神经网络权值和阈值,将传统的杂草算法个体以正态分布空间扩散的方式改进为混合种群多种分布的方式产生子代个体。以金沙江流域中长期径流预报为例,将改进杂草算法优化的神经网络模型的径流预报结果与传统的BP神经网络和基于遗传算法优化的神经网络模型的预报结果进行对比。结果表明,改进杂草算法优化的神经网络应用到金沙江流域的径流预报精度较高,模型收敛更快,结果更加稳定,在实际预测中合理可行,具有一定的应用优势。研究成果为径流预报提供了新思路。 相似文献
20.
基于遗传程序设计的中长期径流预报模型研究与应用 总被引:1,自引:3,他引:1
应用遗传程序设计建立径流中长期预报模型,结合径流序列数据的特点通过自相关分析确定其滞时输入变量的个数,采用均方误差作为其适应度评价函数,以漫湾实测月径流序列(1953~2003年)和洪家渡实测月径流序列(1951~2004年)为例,通过与ARMA模型、人工神经网络模型的预报结果比较,显示该模型应用于径流中长期预报简单易行且精度较高。 相似文献