首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Si/Ni alloy and graphite composites were synthesized using arc-melting followed by high energy mechanical milling (HEMM). Alloy particles comprising of NiSi2, NiSi and Si phases were distributed finely and uniformly on the surface of graphite in the composites obtained after HEMM. The composite containing 60 wt.% of Si/Ni alloy exhibited a stable capacity of 780 mAh/g. Fourier transform infrared spectroscopy (FTIR) analysis confirmed that some bonds were formed between alloy and graphite after HEMM, which appeared to retain the electrical connection between alloy and graphite during cycling. X-ray diffraction (XRD) analysis indicated that NiSi2 and NiSi phases, which acted as an inactive alloy matrix remained invariant during charge and discharge. In addition to NiSi2 and NiSi phases, disordered graphite layers also played the role of media for the accommodation of large volume change of Si during cycling. The large reversible capacity and good cycleability showed that Si/Ni alloy and graphite composite could be an alternative to conventional graphite-based anode materials for lithium-ion secondary batteries.  相似文献   

2.
煤沥青对我国铝用炭阳极质量的影响   总被引:1,自引:0,他引:1  
论述了国产铝电解炭阳极用煤沥青的现状和最新趋势,研究了煤沥青对炭阳极质量的影响,指出我国炭阳极用煤沥青存在的技术标准与大型预焙阳极技术不适宜、质量波动、科研滞后等问题,提出了改进建议。  相似文献   

3.
Carbon beads have been prepared by the carbonization of naphthalene sulfonate formaldehyde (NSF) resin. The procedures for the preparation have been described in detail. The electrochemical performance of NSF carbon beads as an anode material for lithium batteries has been correlated with some carbonization factors such as the molecular weight of the precursor, the ramp rate, and final temperature, etc.  相似文献   

4.
A commercial coal tar pitch was thermally treated at 430 °C for 4 h and then submitted to hot filtration in order to separate the isotropic phase from the mesophase developed during the treatment. Each phase was then oxidatively stabilized in order to preserve its structure during carbonization and then carbonized at temperatures ranging from 700 to 1000 °C. The effect of the microstructure, particle morphology and chemical composition of the carbons and also the influence of their carbonization temperature on the electrochemical behaviour as electrode materials in lithium cells were studied.Galvanostatic cycling of lithium test cells using the carbon materials as positive electrodes showed the improvement of the electrochemical performance in both isotropic and anisotropic phases by stabilization with air previous to carbonization. More subtle differences between isotropic and anisotropic samples were evidenced and interpreted in terms of their textural properties. Moreover, the electrochemical impedance spectroscopy (EIS) has been demonstrated to be an interesting technique to elucidate the changes occurred in the electrode interfaces when these coal tar pitch based carbons are cycled.  相似文献   

5.
Ignacio Cameán  José L. Tirado 《Fuel》2010,89(5):986-15697
The electrochemical performance as potential negative electrode in lithium-ion batteries of graphite materials that were prepared from two Spanish anthracites of different characteristics by heat treatment in the temperature interval 2400-2800 °C are investigated by galvanostatic cycling. The interlayer spacing, d002, and crystallite sizes along the c axis, Lc, and the a axis, La, calculated from X-ray diffractometry (XRD) as well as the relative intensity of the Raman D-band, ID/It, are used to assess the degree of structural order of the graphite materials. The galvanostatic cycling are carried out in the 2.1-0.003 V potential range at a constant current and C/10 rate during 50 cycles versus Li/Li+. Larger reversible lithium storage capacities are obtained from those anthracite-based graphite materials with higher structural order and crystal orientation. Reasonably good linear correlations were attained between the electrode reversible charge and the materials XRD and Raman crystal parameters. The graphite materials prepared show excellent cyclability as well as low irreversible charge; the reversible capacity being up to ∼250 mA h g−1. From this study, the utilization of anthracite-based graphite materials as negative electrode in lithium-ion batteries appears feasible. Nevertheless, additional work should be done to improve the structural order of the graphite materials prepared and therefore, the reversible capacity.  相似文献   

6.
7.
A commercial graphite is ball-milled and the pristine and ball-milled graphites are characterised for use as negative electrodes in lithium-ion capacitors (LICs). Ball milling graphite results in a decrease in discharge capacity when the charge rate is relatively slow, whereas, it leads to an increase in discharge capacity when the charge rate is high. When charged at 0.1 C, the discharge capacities of pristine, 3 h, 10 h and 30 h-milled materials at 6 C are 75, 69, 67 and 66% of theoretical capacity, respectively; however, when charged at 60 C, the discharge capacities of pristine, 3 h, 10 h and 30 h-milled materials, at 60 C, fall to 0.9, 13, 23 and 24% of theoretical capacity, respectively (theoretical capacity: 372 mAh g−1, for LiC6 stoichiometry). This difference in the discharge rate capability behaviour of the pristine and ball-milled graphites with charge rate is attributed to the interplay of two different charge storage mechanisms: Li-ion intercalation and Li-ion adsorption that co-exist; but the later becomes more significant for milled samples. In terms of cycle-life performance, pristine and ball-milled graphites follow similar trends observed for their rate capability behaviour.  相似文献   

8.
The influences of LiBF4, LiClO4, lithium bis(oxalato) borate (LiBOB), LiPF6 with VC and without VC, and the mixed electrolytes composed of different ratios of LiBOB and LiPF6 or LiClO4 on the electrochemical properties of Si/graphite/disordered carbon (Si/G/DC) composite electrode were systematically investigated by constant current charge-discharge and electrochemical impedance spectra (EIS) techniques. Scanning electron microscopy (SEM) was used to observe the change of electrodes in morphology after given cycle numbers. X-ray photoelectron spectroscopy (XPS) was employed to understand the influences of different mixed electrolytes on the composition of SEI layers. The results showed that Si/G/DC composite electrode in the mixed electrolytes presented better electrochemical performance than in single electrolyte. The compactness and compositions of SEI layers intensively influenced the cycle performance of Si/G/DC composite materials. LiBOB and additive VC had a good synergistic effect on the formation of the dense SEI layers. In particular, Si/G/DC in 0.5 M LiBOB + 0.38 M LiPF6 electrolytes containing VC exhibited a high reversible capacity and excellent cycle performance.  相似文献   

9.
Carbon-coated SnS2 nanoparticles were prepared by a simple solvothermal route at low temperature. A carbon coating with a thickness of about 5 nm was deposited on nano-sized SnS2 particles to serve as the anode in lithium-ion batteries. Both the nanostructure and the morphology of the SnS2 powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The coated samples were used as active anode materials for lithium-ion batteries, and their electrochemical properties were examined by constant current charge-discharge cycling, cyclic voltammetry and electrochemical impedance spectroscopy. The reversible capacity of the carbon-coated SnS2 after 50 cycles was 668 mAh/g, which was much higher than that of the uncoated SnS2 (293 mAh/g). The carbon-coated SnS2 also had a better rate capability than the uncoated SnS2 in the range of 0.008-1 C. The capacity retention of the carbon-coated SnS2 was improved due to its good conductivity and the effective buffer matrix that alleviated volume expansion during the charge-discharge process.  相似文献   

10.
Manganese dissolution into an electrolyte from the spinel LiMn2O4 in the lithium-ion cell has been recently investigated. In order to study the influence of the dissolved manganese species on the lithium intercalation/deintercalation into a natural graphite electrode, the electrochemical behavior of graphite was investigated in 1 mol dm−3 LiClO4 electrolyte solution containing a small amount of Mn(II) by the addition of manganese(II) perchlorate. During the charging process, Mn(II) ions were firstly electroreduced on the electrode around 1.0 V versus Li/Li+ followed by irreversible decomposition of the electrolyte and lithium intercalation into the graphite. By microscopic observation of the graphite surface, manganese deposition was confirmed after the charge/discharge test. Due to the manganese deposition, the reversible capacity of the graphite electrode was drastically decreased. Furthermore, the cyclability of the anode was degraded with the amount of the manganese additive increasing. We compared these results with those of the cobalt(II) and nickel(II) additives by dissolving the corresponding perchlorates. Furthermore, we discussed the influence in practical cells based on the consideration of electrochemistry of the deposited metals.  相似文献   

11.
The self-corrosion of different grades of commercial aluminium such as 2S, 3S, 26S and 57S in 4 M NaOH containing 0.6 M ZnO has been determined by weight loss measurements. It is found that 26S and 57S aluminium exhibit negligible corrosion rates in the range 0.05–0.06 mg cm–2 min–1, which can be attributed to the formation of a zincate coating on the aluminium surface. The influence of zincating on the performance of binary and ternary alloys of 26S and 57S aluminium obtained by incorporating alloying elements such as zinc, indium, thallium, gallium and tin as galvanic anode in 4 M NaOH containing 0.6 M ZnO has been examined by studying self corrosion, steady state open circuit potential, galvanostatic polarization and anode efficiency. It is found that zincated ternary alloys of 26S and 57S aluminium containing zinc and indium can serve as good galvanic anodes in alkaline medium. AC impedance measurements and X-ray diffraction studies have been carried out to understand the nature of the film formed on the aluminium surface.  相似文献   

12.
Ti3C2, the most widely studied MXene, was successfully synthesised by etching Al layers from Ti3AlC2 in HF solution. Given its distinct 2D layered structure, Ti3C2 is a promising anode material in Li-ion batteries because of its efficient ion transport, available large surface areas for improved ion adsorption and fast surface redox reactions. Herein, the effects of synthesis temperature on the phase structure, morphology and electrochemical performance were investigated. The materials synthesised at different temperatures were characterised by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Optimal etching occurred at 100?°C, and the synthesised Ti3C2 exhibited smooth surface and large layer space. The synthesised Ti3C2, as anode material for Li-ion batteries, can accommodate more Li+ than those of others, and it exhibits the most ideal electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号