共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface functional groups on carbon materials are critical to their surface properties and related applications. Many characterization techniques have been used to identify and quantify the surface functional groups, but none is completely satisfactory especially for quantification. In this work, we used oxygen K-edge X-ray absorption near edge structure (XANES) spectroscopy to identify and quantify the oxygen containing surface functional groups on carbon materials. XANES spectra were collected in fluorescence yield mode to minimize charging effect due to poor sample conductivity which can potentially distort XANES spectra. The surface functional groups are grouped into three types, namely carboxyl-type, carbonyl-type, and hydroxyl-type. XANES spectra of the same type are very similar while spectra of different types are significantly different. Two activated carbon samples were analyzed by XANES. The total oxygen contents of the samples were estimated from the edge step of their XANES spectra, and the identity and abundance of different functional groups were determined by fitting of the sample XANES spectrum to a linear combination of spectra of the reference compounds. It is concluded that oxygen K-edge XANES spectroscopy is a reliable characterization technique for the identification and quantification of surface functional groups on carbon materials. 相似文献
2.
Covalent fluorescent labeling of surface species (FLOSS) was used to detect relatively low concentrations of surface functional groups (OH, COOH and CHO) on activated carbon fiber surfaces. The chromophores were attached to the surface through a reaction specific to each type of surface functional group. FLOSS indicated the presence of 8.7 × 1011 COOH groups/cm2 and 1.3 × 1012 CHO groups/cm2 on the ACF 25 fiber surface. Neither the infrared spectrum nor the X-ray photoelectron spectrum showed evidence of the existence of those low concentration groups. The concentration of OH groups on the fiber surface was lower than the detection limit (∼1010/cm2) of FLOSS under the present conditions. The FLOSS results for CHO and COOH groups were compared with the concentrations determined by Boehm titration (3.11 × 1013/cm2 for CHO and 1.05 × 1013/cm2 for COOH). The limited accessibility of the ACF surface to relatively large chromophores is one of the main reasons for the discrepancy between these two methods. FLOSS detects only exposed functional groups as opposed to functional groups hidden in small pores. This apparent limitation, however, highlights the surface sensitivity and specificity of FLOSS technique. 相似文献
3.
Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption 总被引:6,自引:0,他引:6
The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury (Hg0) was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidation (693 K), and nitric acid (6N HNO3) treatment of two activated carbons (BPL, WPL) were conducted to vary their surface oxygen functional groups. Adsorption experiments of Hg0 by the activated carbons were conducted using a fixed-bed reactor at a temperature of 398 K and under N2 atmosphere. The pore structures of the samples were characterized by N2 and carbon dioxide (CO2) adsorption. Temperature-programmed desorption (TPD) and base-acid titration experiments were conducted to determine the chemical characteristics of the carbon samples. Characterization of the physical and chemical properties of activated carbons in relation to their Hg0 adsorption capacity provides important mechanistic information on Hg0 adsorption. Results suggest that oxygen surface complexes, possibly lactone and carbonyl groups, are the active sites for Hg0 capture. The carbons that have a lower carbon monoxide (CO)/CO2 ratio and a low phenol group concentration tend to have a higher Hg0 adsorption capacity, suggesting that phenol groups may inhibit Hg0 adsorption. The high Hg0 adsorption capacity of a carbon sample is also found to be associated with a low ratio of the phenol/carbonyl groups. A possible Hg0 adsorption mechanism, which is likely to involve an electron transfer process during Hg0 adsorption in which the carbon surfaces may act as an electrode for Hg0 oxidation, is also discussed. 相似文献
4.
5.
《Carbon》2013
Raman spectra of octadecylamine (ODA) molecules covalently bound to the surface of single walled carbon nanotubes were obtained by varying the laser excitation energy from 1.92 to 3.81 eV. A strong dependence of the Raman intensity on the excitation energy was observed and, under specific conditions of resonance, the Raman signal from the amide linkage can become even stronger than the resonant Raman signal of the carbon nanotubes. This result is explained in terms of a chemical enhancement mechanism due to charge transfer between the ODA molecules and the nanotubes. The enhancement factor was up to 100 times higher than the value typically reported for the chemical Surface Enhanced Raman Scattering (SERS) effect. Our results show that carbon nanotubes may contribute to the still controversial understanding of the ‘chemical’ effects to the enhancement in SERS, extending the scope of application of this analytical tool in strategic areas such as biomedicine, catalysis and environmental analysis. 相似文献
6.
Johannes G. A. Terlingen Hermina F. C. Gerritsen Allan S. Hoffman Jan Feijen 《应用聚合物科学杂志》1995,57(8):969-982
Poly(ethylene) (PE) films were treated with a carbon dioxide (CO2) plasma to study the formation of oxygen-containing functional groups at the surface. Modified and nonmodified films were characterized by X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. During the CO2 plasma treatment, the PE surface is etched and oxidized, yielding films with a very hydrophilic surface. The oxygen incorporation at the surface is fast and can be described by a combination of a zero-order incoraporation and a first-order etching process. Several oxygen functionalities such as carboxylic acid (approximately 14% of the oxygen persent), ketone/aldehyde (25%), and hydroxyl/epoxide (5–9%) groups were introduced at the surface by the plasma treatment. This was shown by using derivatization reactions for specific functional groups followed by XPS analysis. The wettability of the plasma-treated surface decreased when the films were stroed for prolonged periods of time in air. This aging process could not be completely reversed by immersion of the films in water. © 1995 John Wiley & Sons, Inc. 相似文献
7.
C. López-Santos F. YuberoJ. Cotrino A.R. González-Elipe 《Diamond and Related Materials》2011,20(2):49-56
A diamond like carbon material has been exposed to a low pressure microwave and atmospheric pressure plasma of oxygen to enhance its hydrophilicity and surface energy. For comparison, data are also reported after activation with a beam of neutral atoms of oxygen. The surface incorporation of oxygenated functional groups and the determination of the in-depth distribution of this element have been analysed by means of the X ray photoemission spectroscopy (XPS). Atomic force microscopy (AFM) has been used to get information of the surface topography and, by recording friction maps of the surface, the lateral distribution of oxygenated functional groups formed after the different activation treatments. Differences in surface composition, topography and in-depth and lateral distribution of oxygen have been correlated with the intrinsic characteristics of the activation plasma processes. 相似文献
8.
《Fuel Processing Technology》1988,19(2):123-140
The FTIR data in the oxygen-hydrogen stretching and carbonyl stretching regions for 28 Australian coals and their liquefaction products have been investigated. It was found that for the higher rank coals and asphaltenes, the absorbance at 3200 cm−1 correlates with the atomic O/C values and the acidic oxygen contents as measured by a non-aqueous titration technique. The technique of least-squares curve fitting was applied to deconvolute the carbonyl stretching region. The results showed that for the higher rank coals there were relationships between the amount of carbonyl functional groups present, as measured from the band areas, and the coal O/C values. Most brown coals with a high oxygen content (O/C > 0.26) contain less guest material and have a lower concentration of carbonyl groups both as acids and esters than brown coals with a lower oxygen content. They have a higher non-acidic oxygen content, principally as ethers. 相似文献
9.
10.
Modification of the adsorption properties of high surface area graphites by oxygen functional groups 总被引:1,自引:0,他引:1
Montserrat R. Cuervo Esther Asedegbega-Nieto Eva Díaz Salvador Ordóñez Aurelio Vega Ana Belén Dongil Inmaculada Rodríguez-Ramos 《Carbon》2008,46(15):2096-2106
The role of the concentration of oxygen functional groups on the surface of commercial high surface area graphite has been studied in this work. For this purpose, two samples of the parent HSAG have been both oxidized with aqueous HNO3 solution and pyrolysed at 900 °C under an He flow, in order to remove surface oxygen groups. TPD results, in agreement with XPS experiments, reveal the existence of oxygen groups on the surface of the parent HSAG, whose concentration increases substantially after the oxidative treatment, whereas they disappear after the thermal treatment. The adsorption of different alkanes, aromatics and chlorohydrocarbons on the three samples were compared. Adsorption capacities were derived from the adsorption isotherms, whereas thermodynamic properties have been determined from chromatographic retention data. Both the capacity and the strength of adsorption decrease after the oxidative treatment of the graphites. For n-alkanes and cyclic compounds, it was demonstrated that the presence of oxygen surface groups affects their interaction in lower extension. In the adsorption of aromatics and double-bonded compounds, the influence of surface functionalization is more pronounced, since the removal of electrons from the π-electron system of the basal planes, weaken these forces. 相似文献
11.
Shawn Manchester 《Carbon》2008,46(3):518-524
A set of carbon materials was treated by a choice of common oxidizers to investigate the mercury capture capacities at varying temperature conditions. It was found that ozone treatment dramatically increases the mercury capture capacity of carbon surfaces by factors up to 134, but the activity is easily destroyed by exposure to the atmosphere, to water vapor, or by mild heating. Freshly ozone-treated carbon surfaces are shown to oxidize iodide to iodine in solution and this ability fades with aging. FTIR analysis shows broad C-O stretch features from 950 to 1300 cm−1, which decay upon atmospheric exposure and are similar to the C-O-C asymmetric stretch features of ethylene secondary ozonide. The combined results suggest that the ultra-high mercury capture efficiency is due to a subset of labile C-O functional groups with residual oxidizing power that are likely epoxides or (epoxide-containing) secondary ozonides. The results open the possibility for in situ ozonolysis to create high-performance carbon-based Hg sorbents. 相似文献
12.
Vassileios M. Matsis 《Chemical engineering science》2008,63(3):609-621
The macroscopic adsorption behavior of dissolved oxygen on a coconut shell-derived granular activated carbon has been studied in batch mode at 301 and 313 K for initial dissolved oxygen concentrations of 10-30 mg/l and oxygen/carbon ratios of 2-180 mg/g. BET (Brunauer, Emmett, and Teller) surface area, micropore volume, and pore size distribution were determined from N2 isotherm data for fresh and used samples of carbon. The surface groups were characterized using Boehm titrations, potentiometric titrations, and FTIR study. The material is characterized by its high specific surface area , microporocity (micropore volume ), its basic character ( total basic groups) and its high iron content (15,480 ppm Fe). BET n-layer isotherm describes adsorption equilibrium suggesting cooperative adsorption and important adsorbate-adsorbate interactions. Kinetic data suggest a process dependent on surface coverage. At low coverage a Fickian, intraparticle diffusion rate model assuming a local equilibrium isotherm (oxygen dissociation reaction) adequately describes the process. The calculated diffusion coefficients (D) vary between and for initial oxygen concentration of 10 and 20 mg/l, respectively. Sensitivity analysis shows that the oxygen dissociation equilibrium constant determines the equilibrium concentration, whereas the diffusion coefficient controls the kinetic rate of the adsorption process having no effect at the final equilibrium concentration. A combined kinetic mass transfer model with concentration-dependent diffusion (parabolic form) has been developed and successfully applied on the dissolved oxygen adsorption system at high surface coverage. For equilibrium uptake of the estimated mean mass transfer coefficient and adsorption rate constant are and , respectively. 相似文献
13.
14.
In this study, monosized polystyrene (PS) latices were prepared by dispersion polymerization of styrene in isopropanol-water media using poly(acrylic acid) (PAA) as a steric stabilizer and 2,2′-azobisizobutyronitrile (AIBN) as an initiator. The effects of initiator and stabilizer concentrations, alcohol/water and monomer/dispersion medium ratio on the polymerization kinetics, and the size and monodispersity of PS latices were experimented with in a stirred reactor system. Monosize PS beads in the size range of 1.0–3.0 μm were obtained. The PS latex obtained in the first step having a diameter of 2.3 μm were used as the seed latex, and styrene/acrylate monomers, acrylic acid (AA), 2-hydroxyethyl methacrylate (HEMA), and dimethylaminoethyl methacrylate (DMAEMA) were copolymerized onto the PS latex particles. The incorporation of functional groups to the surface and bulk structure of PS was confirmed by IR, FTIR, XPS, and zeta potential measurements. © 1994 John Wiley & Sons, Inc. 相似文献
15.
16.
A pulse mass analyzer was used to study the vapor phase adsorption of organic compounds on single-walled carbon nanotubes and chemically modified/oxidized SWCNTs. The change in mass of a packed bed of adsorbent held at 200 °C was observed following the injection of a pulse of an organic compound from the series: ethanol, iso-propanol, cyclohexane, cyclohexene, benzene, or n-hexane. The relative strength of adsorption was obtained by the mass increase resulting from injection of the pulse and by the time required for desorption. This time was broken into the transit time to reach the end of the bed and the half-time for return from peak to baseline. Hexane was the most strongly held compound of the organic sequence. Oxidative purification of a raw nanotube sample produced a less hydrophobic surface. The effect of the purification was reversed by thermolysis at 700 °C, which removed oxygenated functional groups and increased the affinity for hydrocarbons. The amorphous carbon associated with the raw nanotube sample is a strong adsorbent for hydrocarbons. By comparison, an activated carbon had a greater affinity for hydrocarbons than any of the nanotube samples. 相似文献
17.
Adsorption of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) from simulated diesel fuel with 20 ppmw total concentration of sulfur was investigated on polymer-derived carbon containing various amounts of oxygen and sulfur incorporated to the surface. Initial and exhausted carbons were characterized using adsorption of nitrogen, thermal analysis, potentiometric titration, XPS, mass spectroscopy and elemental analysis. Selectivities for DBT and DMDBT adsorption were calculated with reference to naphthalene. It was found that both the capacity and selectivity for DBT and DMDBT removal from model diesel fuel were affected by the content and arrangement of heteroatoms. Although both oxygen and sulfur containing groups enhance the capacity, the enhancing effects of surface chemistry were more pronounced on the carbon with sulfur incorporated to its matrix. This is linked to sulfur–sulfur interactions. 相似文献
18.
Ozone treatment of fly ash carbon has recently been reported to inhibit the adsorption of commercial surfactants in concrete paste, thus mitigating the known negative effects of carbon on ash utilization. This paper examines the general mechanism of surfactant adsorption on carbon and its suppression by surface oxidation. Experimental results are presented for two carbon types (carbon black, fly ash carbon), both raw and surface oxidized (by ozone and molecular oxygen) and several commercial anionic and non-ionic surfactants (Darex II, SDS, Tergitol). The treated carbon surfaces were characterized with XPS, FT-IR, thermal desorption in N2 and H2/He, surface acidity, hygroscopic behavior, interfacial energy and its components through contact angle measurement involving standard liquid probes. Surface oxidation is found to decrease surfactant adsorption in each of the carbon/oxidant/surfactant systems examined, and its effect correlates with the amount of surface oxides by XPS. The combined results suggest that surfactant adsorption primarily occurs on non-polar carbon surface patches where it is driven by hydrophobic interactions. The main mechanism of oxidative suppression is the destruction of this non-polar surface, though micropore blockage and increased negative surface charge may also contribute for some systems. 相似文献
19.
The specific surfaces of twenty samples of Czechoslovak coals were determined by the method of small-angle scattering of X-rays and the results were compared with the values of specific surfaces obtained by adsorption of methanol at 20 °C. The results of both methods used, when determining specific surfaces of brown coals and lignites were found to be similar, but for hard coals the specific surfaces obtained by adsorption of methanol were seldom half as large. The differences are readily explained, and the X-ray method is considered to provide the best approximation to an absolute upper limit. 相似文献
20.
利用分步结晶法从焦化行业脱硫脱氰废液中回收硫氰酸铵,不仅解决了企业脱硫脱氰废液的处理问题,还可以高纯度地回收硫氰酸铵化学品。脱硫脱氰废液的活性炭吸附脱色是该工艺中的重要单元操作。以6种不同来源的活性炭为脱色剂,对山东石横特钢集团焦化公司的脱硫脱氰废液进行脱色处理,在340 nm波长下采用可见分光光度法对废液脱色效果进行评价,考察了活性炭类型、活性炭用量、脱色时间、脱色温度、搅拌桨转速等对废液脱色效果的影响,得到了较优的操作参数。以此为基础进行了活性炭可重复利用性实验,发现企业自用的4#活性炭重复利用4次时,脱色液仍然保持较好的脱色效果。 相似文献