首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
《Ceramics International》2017,43(12):8655-8663
The heterogeneous titanium oxide-reduced graphene oxide-silver (TiO2/RGO/Ag) nanocomposites were successfully prepared by incorporation of two dimensional (2D) RGO nanosheets and spherical silver nanoparticles (NPs) into the 1D TiO2 nanofibers. The novel TiO2/RGO/Ag nanocomposites were synthesized by loading TiO2 nanofibers, prepared via electrospinning technique, on the RGO/Ag platform. The resulting nanocomposites have been characterized using various techniques containing transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and ultra-violet-visible (UV–vis) spectroscopy. Microscopic studies clearly verified the existence of TiO2 nanofibers with Ag NPs on the surface of RGO sheet and formation of TiO2/RGO/Ag nanocomposites. Moreover, the results of UV–vis spectroscopy demonstrated that TiO2/RGO/Ag nanocomposites extended the light absorption spectrum toward the visible region and significantly enhanced the visible-light photocatalytic performance of the prepared samples on degradation of rhodamine B (Rh. B) as a model dye. It was found that, incorporation of 50 µl RGO/Ag into the TiO2 nanofibers lead to a maximum photocatalytic performance. Also, the improvement of the inactivation of Escherichia coli (E. coli) bacteria under visible-light irradiation was revealed by introduction of RGO/Ag into the TiO2 matrix. The significant enhancement in the photo and bio-activity of TiO2/RGO/Ag nanocomposites under visible-light irradiation can be ascribed to the RGO/Ag content by acting as electron traps in TiO2 band gap.  相似文献   

2.
《Ceramics International》2016,42(5):5766-5771
In this work, TiO2–reduced graphene oxide (RGO) nanocomposites were successfully produced by an ultrasonication-assisted reduction process. The reduction of graphene oxide (GO) and the formation TiO2 crystals occurred simultaneously. The synthesized nanocomposite was characterized by SEM, EDX, Raman spectroscopy, FTIR, XRD, XPS, UV–vis spectroscopy, photoluminescence spectrometer and electrochemical impedance spectroscopy. As a result of the introduction of RGO, the light absorption of octahedral TiO2 was markedly improved. The photocatalytic results revealed that weight percent of RGO has substantial influence on degradation of Rhodamine B under visible light irradiation. The enhancement of the photocatalytic activity can be attributed to the enhancement of the visible-light irradiation harvesting and efficiently separation of the photogenerated charge carriers. Meanwhile, upon the RGO loading, the photoelectric conversion efficiency of TiO2–RGO nanocomposite modified electrode was also highly improved.  相似文献   

3.
A novel TiO2  xNx/BN composite photocatalyst was prepared via a facile method using melamine–boron acid adducts (M·2B) and tetrabutyl titanate as reactants. The morphological results confirmed that nitrogen-doped TiO2 nanoparticles were uniformly coated on the surface of porous BN fibers. A red shift of absorption edge from 400 nm (pure TiO2) to 520 nm (TiO2  xNx/BN composites) was observed in their UV–Vis light absorption spectra. The TiO2  xNx/BN photocatalysts exhibited enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) and the highest photocatalytic degradation efficiency reached 97.8% under visible light irradiation for 40 min. The mechanism of enhanced photocatalytic activity was finally proposed.  相似文献   

4.
《Ceramics International》2016,42(3):3808-3815
SnS2/TiO2 nanocomposites have been synthesized via microwave assisted hydrothermal treatment of tetrabutyl titanate in the presence of SnS2 nanoplates in the solvent of ethanol at 160 °C for 1 h. The physical and chemical properties of SnS2/TiO2 were studied by XRD, FESEM, EDS, TEM, XPS and UV–vis diffuse reflectance spectra (DRS). The photocatalytic activity of SnS2/TiO2 nanocomposites were evaluated by photoreduction of aqueous Cr(VI) under visible light (λ>420 nm) irradiation. The experimental results showed that the SnS2/TiO2 nanocomposites exhibited excellent reduction efficiency of Cr(VI) (~87%) than that of pure TiO2 and SnS2. The SnS2/TiO2 nanocomposites were expected to be a promising candidate as effective photocatalysts in the treatment of Cr(VI) wastewater.  相似文献   

5.
《Ceramics International》2016,42(12):13519-13524
We developed a one-pot in situ synthesis procedure to form nanocomposite of reduced graphene oxide (RGO) sheets anchored with 1D δ-MnO2 nanoscrolls for Li-ion batteries. The as-prepared products were characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The electrochemical performance of the δ-MnO2 nanoscrolls/RGO composite was measured by galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. The results show that the δ-MnO2 nanoscrolls/RGO composite displays superior Li-ion battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1520 and 810 mAh g−1, respectively. After 50 cycles, the reversible discharge capacity is still maintained at 528 mAh g−1 at the current density of 100 mAh g−1. The excellent electrochemical performance is attributed to the unique nanostructure of the δ-MnO2 nanoscrolls/RGO composite, the high capacity of MnO2 and superior electrical conductivity of RGO.  相似文献   

6.
Superparamagnetic Fe3O4 nanoparticles were anchored on reduced graphene oxide (RGO) nanosheets by co-precipitation of iron salts in the presence of different amounts of graphene oxide (GO). A pH dependent zeta potential and good aqueous dispersions were observed for the three hybrids of Fe3O4 and RGO. The structure, morphology and microstructure of the hybrids were examined by X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Raman and X-ray photoelectron spectroscopy. TEM images reveal lattice fringes (d311 = 0.26 nm) of Fe3O4 nanoparticles with clear stacked layers of RGO nanosheets. The textural properties including the pore size distribution and loading of Fe3O4 nanoparticles to form Fe3O4–RGO hybrids have been controlled by changing the concentration of GO. An observed maximum (~10 nm) in pore size distribution for the sample with 0.25 mg ml?1 of GO is different from that prepared using 1.0 mg ml?1 GO. The superparamagnetic behavior is also lost in the latter and it exhibits a ferrimagnetic nature. The electrochemical behavior of the hybrids towards chromium ion was assessed and a novel electrode system using cyclic voltammetry for the preparation of an electrochemical sensor platform is proposed. The textural properties seem to influence the electrochemical and magnetic behavior of the hybrids.  相似文献   

7.
《Ceramics International》2017,43(8):6019-6023
Sb2S3/reduced graphene oxide (SSR) nanocomposites were successfully synthesized through a facile one-step hydrothermal process, as used as anode materials for sodium ion batteries (SIBs). The characterization and electrochemical performance of the as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge tests, respectively. The results show that the introduction of reduced graphene oxide (RGO) can improve the electrochemical performances of SSR nanocomposites. SSR nanocomposites with 10 wt% RGO exhibits the highest reversible capacity of 581.2 mAh g−1 at the current density of 50 mA g−1 after 50 cycles, and excellent rate performance for SIBs. The improved electrochemical performance is attributed to the smaller Sb2S3 nanoparticles dispersed on RGO crumpled structure and synergetic effects between Sb2S3 and RGO matrix, which can increase specific surface area and improve electrical conductivity, reduce sodium ion diffusion distance, and effectively buffer volume changes during cycling process.  相似文献   

8.
Structural, dielectric and magnetic properties of dense Gd-doped strontium titanate ceramics prepared by the conventional mixed oxide method are studied. Lattice parameter is found to decrease linearly in the Sr1-1.5xGd xTiO3 system, confirming the incorporation of Gd onto the Sr site of the perovskite lattice of strontium titanate up to x = 0.05. Real and imaginary parts of the dielectric permittivity of Sr1-1.5xGd xTiO3 ceramics exhibit a relaxation between 100 Hz and 1 MHz in the temperature range of 17–26 K, slightly shifting to higher temperatures with increasing Gd content. Such dielectric behaviour is attributed to the relaxation of individual dipoles formed by off-centre displacement of Gd3+ ions on Sr sites in a highly polarizable lattice of strontium titanate. Other dielectric relaxations observed in Sr1-1.5xGd xTiO3 from 125 to 300 K are attributed to the oxygen vacancy related mechanisms. No magnetic anomaly but paramagnetic behaviour is observed for Sr1-1.5xGd xTiO3 ceramics, indicating an absence of the magnetic order and hence magnetoelectric coupling.  相似文献   

9.
《Ceramics International》2007,33(6):1105-1109
Stoichiometric and monophasic Ba1−xSrxTiO3 (x = 0.3) nanopowders were successfully prepared by the citric acid gel method using barium nitrate, strontium nitrate and tetra-n-butyl titanate as Ba, Sr, Ti sources and citric acid as complexing reagent. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared (IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the thermal decomposition behavior, the crystallization process and the particle size and morphology of the calcined powders. The results indicated that single-phase and well-crystallized Ba1−xSrxTiO3 (x = 0.3) nanopowders with particle size around 80 nm could be obtained after calcining the dried gel at 950 °C for 2 h.  相似文献   

10.
Suman Thakur  Niranjan Karak 《Carbon》2012,50(14):5331-5339
The reduction of graphene oxide (GO) by phytochemicals was investigated using aqueous leaf extracts of Colocasia esculenta and Mesua ferrea Linn. and an aqueous peel extract of orange (Citrus sinensis). The prepared GO and phytoextract reduced GO (RGO) were characterized by ultraviolet–visible spectroscopy, Raman spectroscopy and Fourier transform infrared analyses to provide a clear indication of the removal of oxygen-containing groups from the graphene and the formation of RGO. The extent of reduction was determined from elemental analysis. Formation of few layers of graphene was indicated by transmission electron microscopy. The obtained RGO exhibited good specific capacitance (17–21 Fg?1), high electrical conductivity (3032.6–4006 Sm?1) and high carbon to oxygen ratio (5.97–7.11).  相似文献   

11.
Thin films of a novel, nanocomposite material consisting of diamond-like carbon and polycrystalline/amorphous TiOx (DLC-TiOx, x  2) were prepared using pulsed direct-current plasma enhanced chemical vapour deposition (PECVD). Results from Raman spectroscopy indicate that the DLC and TiOx deposit primarily as segregated phases. Amorphous TiO2 is found to be present on the surface region of the film and there is evidence for the presence of crystalline TiO in the bulk of the film. The hydrophilicity of the DLC-TiOx films increased with increasing titanium content. Culture studies with human osteoblasts revealed that the differences in three-day cell adhesion properties (count, morphology and area) between DLC and DLC-TiOx films containing up to 13 at.% Ti were not statistically significant. However, the cell count was significantly greater for the films containing 3 at.% of Ti in comparison to those containing 13 at.% of Ti. A post-plasma treatment with Ar/O2 was used to reduce the water contact angle, θ, by nearly 40° on the DLC-TiOx films containing 3 at.% of Ti. A cell culture study found that the osteoblast count and morphology after three days on these more hydrophilic films did not differ significantly from those of the original DLC-TiOx films. We compare these results with those for SiOx-incorporated DLC films and evaluate the long-term osteoblast-like cell viability and proliferation on modified DLC surfaces with water contact angles ranging from 22° to 95°.  相似文献   

12.
A composition-induced pseudocubic–tetragonal structural transition was found to be accompanied by a relaxor phase transformation in xBi(Mg0.5Ti0.5)O3–(0.75  x)PbTiO3–0.25(Bi0.5Na0.5)TiO3 ternary solid solutions. Dielectric and ferroelectric measurements suggest the coexistence of ergodic and nonergodic relaxor phases within a single pseudocubic phase zone for samples with 0.50 < x < 0.51 where large electromechanical strains of up to 0.43% (Smax/Emax = 621 pm/V) can be generated. The mechanism was mainly ascribed to the accumulated effects of field-modulated continuous and reversible transformations from a pseudocubic ergodic phase to a rhombohedral short-range ordered phase (but not nonergodic polar phase), and finally to a long-range ordered ferroelectric tetragonal phase. These procedures were found to be strongly dependent on the applied field magnitudes. These findings were reasonably approved by a couple of measurements such as dielectric–temperature–frequency spectrum, ferroelectric polarization/strain hysteresis loops, polarization current density curves and particularly ex situ Raman spectrum and in situ high-resolution synchrotron X-ray diffraction.  相似文献   

13.
Polyimide/titania (PI/TiO2) nanocomposite films have been successfully fabricated through the in situ formation of TiO2 within a PI matrix via sol–gel method. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized by mixing pyromellitic dianhydride (PMDA), with equimolar amount of a diamine monomer having a pendent benzoxazole unit and two flexible ether linkages in N,N-dimethylformamide (DMF) solvent. Tetraethyl orthotitanate [Ti(OEt)4] and acetylacetone were then added to the resulted PAA. After imidization at high temperature, PI/TiO2 hybrid films were formed. The structure and morphology of the hybrid nanocomposites with different titania contents (0 wt%, 5 wt%, 10 wt%, and 15 wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. The results indicate that the TiO2 nanoparticles were homogeneously dispersed in the hybrid films. The thermogravimetric analysis of nanocomposites confirms the improvement in the thermal stability with the increase in the percentage of titania nanoparticle. Transmission electron microscopy showed that the nanoparticles with an average diameter of 25–40 nm were dispersed in the polymer matrix.  相似文献   

14.
A-site deficient perovskite compounds, La(2?x)/3NaxTiO3 (0.02  x  0.5) and Nd(2?x)/3LixTiO3 (0.1  x  0.5) microwave ceramics, were investigated by Raman scattering. Nd(2?x)/3LixTiO3 (0.1  x  0.5) was also investigated by extended X-ray absorption fine structure (EXAFS) measurement. The Raman shifts of the E (239 cm?1) and A1 (322 cm?1) modes of La(2?x)/3NaxTiO3 were found to decrease with x. However, the E (254 cm?1) and A1 (338 cm?1) of Nd(2?x)/3LixTiO3 were found to blueshift with x, which was caused by Li substitution. The redshift of the A1 (471 cm?1) phonon of Nd(2?x)/3LixTiO3 (0.1  x  0.3) indicates that O–Ti–O bonding forces lessen with Li concentration, which is consistent with the EXAFS result that Ti–O bond lengths increase for 0.1  x  0.3. For x > 0.3, the EXAFS result shows that Ti–O bond lengths decrease. Moreover, Ti–O bond lengths show strong correlation with the microwave dielectric constants of Nd(2?x)/3LixTiO3.  相似文献   

15.
We present a simple and fast approach for the synthesis of a graphene–TiO2 hybrid nanostructure using a microwave-assisted technique. The microstructure, composition, and morphology were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, Raman microscopy, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. The electrochemical properties were evaluated using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. Structural analysis revealed a homogeneous distribution of nanosized TiO2 particles on graphene nanosheets. The material exhibited a high specific capacitance of 165 F g−1 at a scan rate of 5 mV s−1 in 1 M Na2SO4 electrolyte solution. Theenhanced supercapacitance property of these materials could be ascribed to the increased conductivity of TiO2 and better utilization of graphene. Moreover, the material exhibited long-term cycle stability, retaining ∼90% specific capacitance after 5000 cycles, which suggests that it has potential as an electrode material for high-performance electrochemical supercapacitors.  相似文献   

16.
《Ceramics International》2017,43(2):1887-1894
Fe3O4/reduced graphene oxide (RGO) nanocomposite was synthesized by a simple hydrothermal method and then SiO2 coated onto Fe3O4 by a modified Stӧber method. The transmission electron microscopy and field emission scanning electron microscopy characterization indicate that masses of Fe3O4@SiO2 core-shell structure nanospheres attached to the RGO sheets, and that the thicknesses of SiO2 shells are about 20–40 nm. The X-ray diffractograms and Raman spectra illustrate that the synthesized samples consist of highly crystallized cubic Fe3O4, amorphous SiO2 and disorderedly stacked RGO sheets. The magnetic hysteresis loops reveal the ferromagnetic behavior of the samples at room temperature. In addition, the Fe3O4@SiO2/RGO paraffin composite exhibit excellent electromagnetic wave absorption properties at room temperature in the frequency range of 2–18 GHz, which are attributed to the effective complementarities between the dielectric loss and magnetic loss. For Fe3O4@SiO2/RGO-1 and Fe3O4@SiO2/RGO-2 nanocomposite, the minimum reflection loss can reach −26.4 dB and −16.3 dB with the thickness of 1.5 mm, respectively. The effective absorption bandwidth of the samples can reach more than 10.0 GHz with the thickness in the range of 1.5–3.0 mm. It is demonstrated that such nanocomposite could be used as a promising candidate in electromagnetic wave absorption area.  相似文献   

17.
In the present study, the effect of TiO2 doping on (1 ? x) Bi2O3 (x)TiO2 (x = 0.05, 0.10, 0.15, 0.20) materials is investigated using X-ray diffraction (XRD), differential thermal analysis (DTA), ac conductivity, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). XRD results show the formation of single phase Bi12TiO20 at x  0.15 concentration of TiO2. It is observed that, the lower concentration of TiO2 leads to the formation of mixed phase. The x = 0.15 and x = 0.20 samples exhibit regular and uniform distribution of the grains as compared to x = 0.10 sample. The highest conductivity is observed for x = 0.15 specimen, e.g., 9 × 10?7 S cm?1.  相似文献   

18.
In this paper, photoluminescence (PL) behavior of MgxZn1?xO/MCM-41 nanocomposite (where x = 0.05, 0.15, 0.25 and 0.30) is reported. Samples were characterized with small angle X-ray diffraction (SAXRD), wide angle XRD, BET (Brunauer–Emmet–Teller) surface area and pore size analyzer, field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscope (HR-TEM) and PL spectrometer. The structure of MCM-41 was confirmed from both SAXRD and BET results. A broad PL band positioned at around 393 nm has been exhibited by ZnO/MCM-41 nanocomposite. With Mg doping, intensity of this PL band decreased for x = 0.05 and 0.15 and above this there was gradual enhancement in intensity. It was found that the intensity of the PL band, strongly depends on the particle size of ZnO. The increase in particle size along with MgO phase separation for x = 0.30 was proved by HR-TEM analysis. Interestingly, the differences in particle sizes at different concentrations of Mg did not account for shift in the PL band. A twofold enhancement in the intensity of PL band when x = 0.30 compared to bare ZnO/MCM-41 nanocomposite was observed. It is attributed for the increase in particle size which preserves the energy saved by passivation of ZnO nanoparticles and the other one is formation of heterojunction structures between ZnO and MgO. It was also evident from these results that there is increase in oxygen vacancies of ZnO crystallites with increase in particle size.  相似文献   

19.
《Ceramics International》2016,42(15):16666-16670
NiFe2O4/reduced graphene oxide (NFO/RGO) nanocomposites were prepared by a facile one-step hydrothermal method and used as anode for sodium ion batteries (SIBs). The crystal structures, morphologies and electrochemical properties of as-prepared samples were evaluated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests. The results show that NFO/RGO-20 (20 wt%) delivers the highest reversible capacity of ~450 mA h g−1 at 50 mA g−1 after 50 cycles with good cycling stability. The excellent sodium storage performance of NFO/RGO should be attributed to the synergistic effect between NFO and RGO to form conductive network structure, which offers the increased specific surface area, the facilitated electron transfer ability and the buffering of volume expansion.  相似文献   

20.
The polycrystalline samples of (1 ? x)BiFeO3xBa0.8Sr0.2TiO3 (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4 and x = 1) were prepared by the conventional solid state reaction method. The effect of substitution in BiFeO3 by Ba0.8Sr0.2TiO3 on the structural, dielectric and magnetic properties was investigated. X-ray diffraction study showed that these compounds crystallized at room temperature in the rhombohedral distorted perovskite structure for x  0.3 and in cubic one for x = 0.4. As Ba0.8Sr0.2TiO3 content increases, the dielectric permittivity increases. This work suggests also that the Ba0.8Sr0.2TiO3 substitution can enhance the magnetic response at room temperature. A remanent magnetization Mr and a coercive magnetic field HC of about 0.971 emu/g and 2.616 kOe, respectively were obtained in specimen with composition x = 0.1 at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号