首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation of the pore structure of coal chars during gasification   总被引:2,自引:0,他引:2  
Bo Feng 《Carbon》2003,41(3):507-523
The variation of the pore structure of several coal chars during gasification in air and carbon dioxide was studied by argon adsorption at 87 K and CO2 adsorption at 273 K. It is found that the surface area and volume of the small pores (<10 Å) do not change with carbon conversion when the coal char is gasified in air, while those of the larger pores (10-20 Å, 20-50 Å, 50-2500 Å) increase with increase of carbon conversion. However in CO2 gasification, all the pores in different size ranges increase in surface area and volume with increase of carbon conversion. Simultaneously, the reaction rate normalized by the surface area of the pores >10 Å for air gasification is constant over a wide range of conversion (>20%), while for CO2 gasification similar results are obtained using the total surface area. However, in the early stages of gasification (<20%) the normalized reaction rate is much higher than that in the later stage of gasification, due to existence of more inaccessible pores in the beginning of gasification. The inaccessibility of the micropores to adsorption at low and ambient temperatures is confirmed by the measurement of the helium density of the coal chars. The random pore model can fit the experimental data well and the fitted structural parameters match those obtained by physical gas adsorption for coal chars without closed pores.  相似文献   

2.
Kinetic parameters for gasification of hybrid poplar spp. char have been measured. A differential reactor was used to obtain rate data for catalytic and non-catalytic reactions of small wood char particles (1–2 mm in size) at 100 kPa for temperatures in the range 400–700 °C, steam partial pressures between 45–100 kPa, and space velocities in the range 2.0–7.3 s?1 During pyrolysis of wood without the addition of either K2CO3 or Na2CO3, the cellular structure of the wood was preserved. Additionally, this cellular structure remained intact during most of the gasification process. Addition of K2CO3 and Na2CO3 before pyrolysis caused a degradation of the regular cellular structure and an increase in the rate of gasification of the resulting char. Effectiveness factor calculations were made for particles of various sizes and results indicate that diffusion control of the gasification reaction becomes important for particles larger than 0.5 CM.  相似文献   

3.
《Carbon》2004,42(12-13):2451-2455
An experimental work on the influence of temperature and the activating agent on the development of surface area and porosity for activated carbons was carried out. Three coals from different regions of Colombia were activated with CO2, steam and a CO2–steam mixture. Coal from the Antioquia Region (La Capotera) was activated with a CO2–steam mixture at 1073, 1123 and 1173 K and with CO2 and steam at 1073 K. Other two coals from Antioquia and Cesar regions (La Grande and Borrego) regions were activated with a CO2–steam mixture at 1073 K and these were compared with the La Capotera char for the same conditions. The content of ash was confirmed to affect the development of surface area: coals with lower amount of ash developed higher specific surface areas. Activation temperature also affected the development of surface area: the use of high temperature produced low surface areas. Results indicate that CO2–steam produces larger surface areas than CO2 and steam alone, and reactions with CO2–steam and CO2 develop a more uniform porosity than reaction with steam. The pore sizes are larger when steam is used and smaller when CO2 is used.  相似文献   

4.
《Fuel Processing Technology》2006,87(11):997-1006
Saskatchewan lignite was used as a precursor to prepare carbonaceous adsorbents for use as SO2 adsorbent from flue gases. The lignite was carbonized producing char in a fixed bed microreactor system at different temperatures from 350 to 550 °C in nitrogen atmosphere. The chars obtained at 475 °C for 120 min exhibited the highest micropore surface area (136 m2/g) and volume (0.062 cm3/g) and the smallest median pore diameter (∼ 0.7 nm). Carbon dioxide and steam were used as activating agents. Activation of char at optimum conditions of 650–675 °C for 15 min with carbon dioxide and steam resulted in a further increase in micropore surface area (220 and 186 m2/g for CO2 and steam, respectively) and volume (0.090 and 0.085 cm3/g for CO2 and steam, respectively). The yield of char was 64 wt.%, while the yields of activated carbon were 60 and 57 wt.% for CO2 and steam activation, respectively; all based on the mass of original lignite.  相似文献   

5.
The catalytic activity of a wood char towards CH4 decomposition in a pyrolysis gas was investigated in a fixed bed reactor for maximising hydrogen production from biomass gasification. Wood char is suggested to be the cheapest and greenest catalyst for CH4 conversion as it is directly produced in the pyrolysis facility. The conversion of methane reaches 70% for a contact time of 120 ms at 1000 °C. Because steam and CO2 are simultaneously present in the pyrolysis gas, the carbon catalyst is continuously regenerated. Hence the conversion of methane quickly stabilises. Such a phenomenon is shown to be possible through the oxidation of the char by CO2 and H2O at high temperature, which prevents the blocking of the mouth of pores by the concurrent pyrolytic carbon deposition. In the experimental conditions, oxygenated functional surface groups are continuously formed (by steam and CO2 oxidation) and thermally decomposed. The active sites for CH4 chemisorption and decomposition are suggested to be the unsaturated carbon atoms generated by the evolution of the oxygenated functions at high temperature.  相似文献   

6.
The effect of coal particle size on pyrolysis and steam gasification   总被引:3,自引:0,他引:3  
For future power generation from coal, one preferred option in the UK is the air-blown gasification cycle (ABGC). In this system coal particles sized up to 3 mm, perhaps up to 6 mm in a commercial plant, are pyrolysed and then gasified in air/steam in a spouted bed reactor. As this range of coal particle sizes is large it is of interest to investigate the importance of particle size for those two processes. In particular the relation between the coal and the char particle size distribution was investigated to assess the error involved in assuming the coal size distribution at the on-set of gasification. Different coal size fractions underwent different changes on pyrolysis. Smaller coal particles were more likely to produce char particles larger than themselves, larger coal particles had a greater tendency to fragment. However, for the sizes investigated in this study ranging from 0.5 to 2.8 mm, the pyrolysis and gasification behaviour was found not to vary significantly with particle size. The coal size fractions showed similar char yields, irrespective of the different char size distributions resulting from pyrolysis. Testing the reactivity of the chars in air and CO2 did not reveal significant differences between size fractions of the char, nor did partial gasification in steam in the spouted bed reactor. From the work undertaken, it can be concluded that pyrolysis and gasification within the range of particle sizes investigated are relatively insensitive to particle size.  相似文献   

7.
Several series of activated carbons were prepared from olive stones by means of carbonization followed by activation with carbon dioxide, water steam and a mixture of them, under different experimental conditions. The changes in porosity of the original char during activation were studied by adsorption of N2 at 77 K, CO2 at 273 K and Hg porosimetry. The study was carried out covering a wide range of burn-off (19–83%) using activation times of 20–120 min, and temperatures between 650 and 950 °C. It is shown quantitatively how the individual factors influence the development of microporosity. It was found that in general terms, increasing activation produces a continuous increase in the volume of micropores and mesopores. However, this development occurs in a different proportion whether CO2 or steam are used: while CO2 produces narrow micropores on the carbons and widens them as time is increased, steam yields pores of all the sizes from the early stages of the process. The simultaneous use of these two activating agents resulted positive at times higher than 1 h, since it yielded carbons with higher volumes of pores.  相似文献   

8.
《Fuel》2006,85(10-11):1518-1525
The purpose of this study is to investigate the major factors influencing the Na-catalysed and non-catalysed gasification reactivity of a Victorian brown coal in steam. An acid-washed (H-form) sample and a Na-exchanged (Na-form) sample prepared from the same Loy Yang brown coal were gasified in 15% steam in a novel two-stage fluidised-bed/fixed-bed reactor. All C-containing species in the gasification product gas were converted into CO2 that was monitored with a mass spectrometer continuously to determine the in situ gasification reactivity. While the volatile-char interactions were responsible for the volatilisation of Na when the coal was continuously fed into the reactor, the physical entrainment by gas of agglomerated Na-containing crystalline species (likely to be Na2CO3 or Na2O) from char surface was the main mechanism for the loss of Na during char gasification. The Raman spectroscopy of char showed the preferential release of smaller aromatic ring system to be more significant during the non-catalysed char gasification than the Na-catalysed gasification. The dispersion of Na in char appeared to deteriorate with the enrichment of large aromatic ring systems in char, greatly affecting the char gasification reactivity. The char gasification reactivity showed a maximum with increasing conversion with the maximum to shift towards lower conversion with increasing temperature. Increasing temperature does not always lead to increases in the in situ char gasification reactivity.  相似文献   

9.
The effects of potassium on the reactivity of biomass-char steam gasification with the presence of a porous material were investigated by using a thermogravimetric reactor with high-heating rates. Lignin was employed as a char-rich biomass model compound. The potassium carbonate (K2CO3) was added to lignin and a mixture of lignin and γ-Al2O3 porous particles by means of aqueous impregnation. The effects of K2CO3 and γ-Al2O3 addition on pyrolysis of lignin and steam gasification of lignin-derived char were evaluated in terms of lignin conversion and the gaseous products. Results showed that K2CO3 slightly increased the steam gasification rate of lignin-derived char, but it did not influence the conversion in both the pyrolysis and steam gasification steps. In addition, tar was reduced by adding K2CO3 because of the increment of carbon conversion to gas product. The presence of γ-Al2O3 was found to induce the lower reactivity of resulting char after pyrolysis, reducing the gasification rate and conversion. A significant improvement in gasification conversion was observed with the presence of both K2CO3 and γ-Al2O3. Especially, almost complete gasification was achieved at a reaction temperature of 1,073 K.  相似文献   

10.
A new type of pressurized entrained-flow pulverized coal gasification technology has been developed by ECUST. It is characterized with four nozzles symmetrically disposed on the upper part of a gasifier. The effects of operation conditions on gasification, N2 as carrier gas with middle pressure superheated (MP SH) steam, CO2 as carrier gas with MP SH steam and CO2 as carrier gas without MP SH steam, respectively, have been tested in the pilot plant. The carbon conversion of all gasification schemes is larger than 99%. For N2 as carrier gas, the volume fraction (Dry) of CO + H2 is larger than 90% (v). For CO2 as carrier gas, the volume fraction (Dry) of CO + H2 is larger than 92% (v) with MP SH steam and larger than 95% (v) without MP SH steam.At the same time, based on Gibbs energy minimization principle, the pulverized coal gasification system model was built. The simulation results well matched the pilot-trial data under different operation conditions. The model can be used for the design, assessment, and improvement of the entrained-flow coal gasification system.  相似文献   

11.
The gasification reactivity of char from dried sewage sludge (DSS) applicable to fluidized bed gasification (FBG) was determined. The char was generated by devolatilizing the DSS with nitrogen at the selected bed temperature and was subsequently gasified by switching the fluidization agent to mixtures of CO2 and N2 (CO2 reactivity tests) and steam and N2 (H2O reactivity tests).. The tests were conducted in the temperature range of 800–900 °C at atmospheric pressure, using partial pressure of the main reactant in the mixture (CO2 or H2O) in the range of 0.10–0.30 bar. Expressions for the intrinsic reactivity (free of diffusion effects) as a function of temperature, partial pressure of gas reactant (CO2 or H2O) and degree of conversion were obtained for each reaction. For the whole range of conversion it was found that the char reactivity in an H2O–N2 mixture was roughly three times higher than that in a mixture with the corresponding partial pressure of CO2. The reactivity was only influenced by particle size greater than 1.2 mm in the tests with steam at 900 °C. It was demonstrated that the method of char preparation greatly influences the reactivity, highlighting the importance of generating the char in conditions similar to that in FBG.  相似文献   

12.
Steam gasification of biomass can generate hydrogen-rich, medium heating value gas. We investigated pyrolysis and char reaction behavior during biomass gasification in detail to clarify the effect of steam presence. Rice straw was gasified in a laboratory scale, batch-type gasification reactor. Time-series data for the yields and compositions of gas, tar and char were examined under inert and steam atmosphere at the temperature range of 873-1173 K. Obtained experimental results were categorized into those of pyrolysis stage and char reaction stage. At the pyrolysis stage, low H2, CO and aromatic tar yields were observed under steam atmosphere while total tar yield increased by steam. This result can be interpreted as the dominant, but incomplete steam reforming reactions of primary tar under steam atmosphere. During the char reaction stage, only H2 and CO2 were detected, which were originated from carbonization of char and char gasification with steam (C + H2O→CO + H2). It implies the catalytic effect of char on the water-gas shift reaction. Acceleration of char carbonization by steam was implied by faster hydrogen loss from solid residue.  相似文献   

13.
The gasification reactivities of three kinds of different coal ranks (Huolinhe lignite, Shenmu bituminous coal, and Jincheng anthracite) with CO2 and H2O was carried out on a self-made pressurized fixed-bed reactor at increased pressures (up to 1.0 MPa). The physicochemical characteristics of the chars at various levels of carbon conversion were studied via scanning electron microscopy (SEM), X-ray diffraction (XRD), and BET surface area. Results show that the char gasification reactivity increases with increasing partial pressure. The gasification reaction is controlled by pore diffusion, the rate decreases with increasing total system pressure, and under chemical kinetic control there is no pressure dependence. In general, gasification rates decrease for coals of progressively higher rank. The experimental results could be well described by the shrinking core model for three chars during steam and CO2 gasification. The values of reaction order n with steam were 0.49, 0.46, 0.43, respectively. Meanwhile, the values of reaction order n with CO2 were 0.31, 0.28, 0.26, respectively. With the coal rank increasing, the pressure order m is higher, the activation energies increase slightly with steam, and the activation energy with CO2 increases noticeably. As the carbon conversion increases, the degree of graphitization is enhanced. The surface area of the gasified char increases rapidly with the progress of gasification and peaks at about 40% of char gasification.  相似文献   

14.
Gasification kinetics of wheat straw char with CO2 was investigated using Thermogravimetric apparatus (TGA). The main objective was to identify the diffusional and surface reaction phenomena that may occur during biomass char gasification experiments with CO2. The effects of temperature (750–900 °C) and particle size (<60–925 μm) on gasification rate of char-CO2 reaction were determined. The 50% conversion (r50) rate showed that the reactivity increases with temperature, and it decreases as the particle size increases. The important diffusional parameters such as effective diffusivity, effectiveness factor and Thiele modulus were calculated based on the experimental data and the results showed that the impact of physical factors is prominent at high temperatures and large particle sizes. It was found that char gasification within the temperature range studied followed the chemically controlled reaction regime and the influence of pore diffusion was negligible for fine powder particles.  相似文献   

15.
Char reactivity has a strong influence on the gasification process, since char gasification is the slowest step in the process. A sample of waste PET was devolatilised in a vertical quartz reactor and the resulting char was partially gasified under a CO2 atmosphere at 925 °C in order to obtain samples with different degrees of conversion. The reactivity of the char in CO2 was determined by isothermal thermogravimetric analysis at different temperatures in a kinetically controlled regime and its reactive behaviour was evaluated by means of the random pore model (RPM). The texture of the char was characterised by means of N2 and CO2 adsorption isotherms. The results did not reveal any variation in char reactivity during conversion, whereas the micropore surface area was affected during the gasification process. It was found that the intrinsic reaction rate of the char can be satisfactorily calculated by normalizing the reaction rate by the narrow micropore surface area calculated from the CO2 adsorption isotherms. It can be concluded therefore that the surface area available for the gasification process is the area corresponding to the narrow microporosity.  相似文献   

16.
微型流化床反应分析及其对煤焦气化动力学的应用   总被引:4,自引:4,他引:0       下载免费PDF全文
在概述最新研发的微型流化床反应分析(micro-fluidized bed reaction analysis,MFBRA)方法与应用的基础上,应用该方法进一步研究了半焦-CO2、半焦-水蒸气等温气化反应动力学,并与热重分析(thermogravimetric analyzer,TGA)求取的气化反应动力学数据比较。在最小化气体扩散的实验条件下,利用MFBRA和TGA测定求算的半焦-CO2、半焦-水蒸气气化反应在受反应动力学控制的低温段的活化能非常接近,说明了MFBRA对等温气化反应分析的适用性和可靠性。实验研究还发现:半焦-CO2、半焦-水蒸气气化反应在MFBRA中受反应动力学控制的温度范围较在TGA中明显宽,且在具有明显扩散影响的高温段通过MFBRA测定的半焦-CO2气化反应表观活化能明显大于利用TGA测定的值,表明在MFBRA中受到的气体扩散抑制效应较小。  相似文献   

17.
《Fuel》1986,65(1):58-62
Both CO2 and steam gasification kinetics were determined for Michigan Antrim shale char using TGA techniques in combination with on-line gas chromatography. While the reaction kinetic expressions were similar to those previously derived for Green River Formation (western USA) and Swedish Ranstad shale chars, the gasification rates were found to be on the same order as those of Ranstad char but significantly lower than those of western shale char. In addition, the gas produced from steam gasification was found to be significantly higher in CO than the corresponding gas from western shale char. This and the presence of significant quantities of CO2 lower the attractiveness of Antrim char as a source of synthesis gas or hydrogen.  相似文献   

18.
Xijie Chu  Baoqing Li  Haokan Chen 《Fuel》2008,87(2):211-215
The sulfur transformation during pyrolysis and gasification of Shenhua direct liquefaction residue was studied and the release of H2S and COS during the process was examined. For comparison, the sulfur transfer of Shenhua coal during pyrolysis and that of pyrolyzed char during gasification were also studied. The residue was pyrolyzed at 10 °C /min to 950 °C. During pyrolysis about 33.6% of sulfur was removed from the residue, among which 32.1% was formed H2S in gas and 1.5% was transferred into tar, 66.4% of the sulfur was remained in residue char. Compared with coal, the residue has generated more H2S due to presence of Fe1−xS which was enriched in residue during liquefaction process. There is a few COS produced at 400-500 °C during pyrolysis of coal, but it was not detected form pyrolysis of the residue. During CO2 gasification, compared with pyrolysis and steam gasification, there are more COS and less H2S formation, because CO could react with sulfide to form COS. During steam gasification only H2S was produced and no COS detected, because H2 has stronger reducibility to form H2S than CO. After steam gasification no sulfur was detected in the gasification residue. The XRD patterns show after steam gasification, only Fe3O4 is remained in the gasification residue. This indicates that the catalyst added during the liquefaction of coal completely reacted with steam, resulting in the formation of H2 and Fe3O4.  相似文献   

19.
Char gasification has been studied in different ways with different feedstock; however, the fundamental studies about the variation of char reactivity with different combination of parameters are still required in order to design the biomass char gasification process in large scale unit. In this work, char from flax straw pyrolysis was used for gasification with different partial pressure of CO2, different temperature and particle size. Results showed that 375‐µm particle sizes of char has higher reactivity compared to other particle sizes and the inhibition effect was also less at 375‐µm particle size. Kinetic parameters varied for gasification reaction with different particle sizes and the average activation energy was 196 kJ/mol and the order of the reaction was approximately 1. Inhibition studies with the addition of CO in the gasifying agent proved that CO molecules interfere significantly and reduced the reactivity. ANOVA test showed that the temperature plays a vital role in char reactivity. The particle sizes of 375 and 800 µm along with the CO2 partial pressure of 0.35 bars are the best combination for achieving the maximum reactivity. © 2012 Canadian Society for Chemical Engineering  相似文献   

20.
Four kinds of porous mullite ceramics, named lotus ceramics because of the similarity of their microstructure with lotus roots, were prepared by an extrusion method using rayon fibers of four different diameters (8.1, 9.6, 16.8 and 37.6 μm) as the pore formers. The physicochemical properties of these samples were characterized to test their applicability for the generation of microbubbles. The lotus ceramic samples contained pores of 9.4, 10, 15.6 and 30 μm size and porosities of 45–48%. SEM micrographs confirmed that the cylindrical pores were oriented unidirectionally along the extrusion direction and the degree of alignment was greater with larger fiber diameter. The permeability for gaseous CO2 increased with increasing pore size from 3×10?13 to 8×10?13 m2. The four lotus ceramic samples, a commercial air stone (72 μm) and two simple tubes (1000 and 3500 μm) were used to generate microbubbles in water under ambient conditions from a gas mixture of CO2 and air. It was found that the bubble size could be decreased with bubblers of smaller pore size. In the bubble size measurements for pure CO2 and air, the air bubbles were larger than the CO2 bubbles due to partial dissolution of CO2 into the water during bubbling. In order to generate smaller size bubbles using porous ceramic bubblers, the liquid must penetrate through the pores of the lotus ceramics before the gas is introduced into the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号