首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized double wall carbon nanotubes (DWNTs) with few defects and little amorphous carbon by hot wall chemical vapor deposition (CVD) of alcohol. Catalysts for the DWNT growth were made from cobalt and molybdenum acetates. Scanning electron microscopy, transmission electron microscopy, multi frequency resonance Raman spectroscopy and optical absorption spectroscopy were used for characterization of the product with regard to DWNT yield, the nanotube diameter distribution, defect concentration and amorphous carbon content. Base pressures lower than 1 × 10−5 mbar in the CVD reactor considerably suppress defects in the DWNTs. Optimized growth conditions for DWNT formation are presented.  相似文献   

2.
We present the single step preparation of nano-iron cores embedded in carbon layers and their preliminary application to the growth of carbon nanotubes. CO2 laser pyrolysis of volatile iron and carbon precursors in a gas flow reactor was used in order to obtain the Fe–C nanocomposites. The structure and composition of the obtained nanopowders were analysed by transmission electron microscopy, high-resolution transmission electron microscopy, electron energy loss spectroscopy and Raman spectroscopy. The results indicate that the synthesized carbon embedded iron nanoparticles (∼3–7 nm mean diameter) present sharp particle distributions. The degree of agglomeration and the number of surrounding carbon layers depend on the relative concentration of reactive donors. Silicon substrates seeded with a dilution of Fe–C nanocomposites were further used to catalyze nanotubes/nanofibres growth by the laser-induced CVD method. A deeper insight in the inception and growth mechanism of these structures is needed in order to achieve different levels of encapsulation and subsequent nanotube growth.  相似文献   

3.
Carbon–silica core–shell fibers (which unusually consist of carbon nanofibers coated with silica) were synthesized using a two-step process. First, fluorination of carbon nanofibers (CNFs) allows their homogenous dispersion into a polysiloxane matrix. A longlife dispersion of nanofibers in solvated polysiloxane has been prepared. Second, the polysiloxane/fluorinated carbon was thermally treated in air until 700 °C. Defluorination and conversion of polysiloxane into silica occur and result in carbon–silica core–shell fibers. The thermal treatment of the polysiloxane/carbon and the resulting silica/carbon–silica core–shell nanostructures were investigated using solid state nuclear magnetic resonance using 19F, 13C 1H, and 29Si nuclei, X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopies.  相似文献   

4.
Sidewall modification of multiwalled carbon nanotubes (abbreviated as MWCNTs) was achieved using Allivum sativum (garlic) extract by an acid-free green process. These organosulfur modified-MWCNTs were then decorated with gold nanoparticles and examined by transmission electron microscopy. The presence of organosulfurs over the modified nanotube surface was confirmed. Nanotube surface modification and subsequent presence of thiols as an active linker was confirmed by Raman spectroscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy. In the absence of these organosulfurs (thiols), no gold nanoparticle attachment was observed. Both small (1–8 nm) and large (12–20 nm) gold nanoparticles were found to decorate the modified nanotube surface suggesting coalescence among nanoparticles.  相似文献   

5.
We have encapsulated adamantane (C10H16) in single- and multi-walled carbon nanotubes. Adamantane is a high symmetry cage like molecule with point group symmetry Td and can be considered as a hydrogen-terminated diamond fragment. We confirmed and identified the successful filling by high resolution transmission electron microscopy, 13C nuclear magnetic resonance, infrared and Raman spectroscopy. 13C nuclear magnetic resonance of the adamantane filled nanotubes reveals that the adamantane molecules stop rotating after encapsulation. A blue-shift of the Raman active radial breathing modes of the carbon nanotubes supports this and suggests a significant interaction between encapsulated adamantane molecules and the single wall nanotubes. The encapsulated adamantane molecules exhibit red shifted infrared C–H vibration modes which we assign to a slight elongation of the C–H bonds. We observe both a nanotube diameter dependence of the adamantane filling ratio and a release rate of adamantane from the CNTs that depends on the CNT diameters.  相似文献   

6.
Carbon nanotubes (CNTs) decorated by a high density of carbon nanoparticles of turbostratic graphene stacks have been fabricated by low energy hydrocarbon ion deposition at 700 °C. Transmission and scanning electron microscopy show that the carbon particles of turbostratic graphene stacks extend from the nanotube surface. The diameter of CNTs decreases with the increasing percentage of hydrogen in the gas phase. Raman spectroscopy indicates that the formation of carbon nanoparticles of turbostratic graphene stacks results from the high temperature used in the experiment. Meanwhile, Raman spectroscopy and high resolution transmission electron microscopy indicate that the carbon nanoparticle degree of crystallinity is lower with increasing hydrogen content in the gas phase due to the etching effect of hydrogen ions.  相似文献   

7.
BACKGROUND: While carbon nanotubes are highly interesting materials for a variety of applications, their inherent insolubility limits widespread applications and solution‐phase processing. It is known that chemical functionalization can overcome this insolubility problem, and covalent grafting of polymers to the nanotube surface has been shown to be effective. In this study, the effect of polymer molecular weight on the solubility of polymer–nanotube conjugates was investigated. RESULTS: A series of nitroxide‐capped polystyrene polymers ranging in molecular weight from 2900 to 105 000 g mol?1 were grafted to single‐walled carbon nanotubes (SWNTs). The resulting polystyrene–SWNT conjugates exhibited different degrees of solubility in tetrahydrofuran. Subsequent thermogravimetric and UV‐visible spectroscopy analyses indicated that carbon nanotube solubility reached a maximum when a polymer sample with a weight‐average molecular weight of 10 000 g mol?1 was used. Higher and lower molecular weights resulted in reduced solubilities. CONCLUSION: Polymer chains of intermediate length maximize SWNT solubility, while lengths that are too low or too high seem to diminish the ability of the polymer–SWNT conjugates to remain in solution. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
We prepared two kinds of catalytic layers onto n-typed silicon substrate—nickel by r.f.-magnetron sputtering and iron (III) nitrate metal oxide by spin coating. For iron (III) nitrate metal oxide 0.5 mol of ferric nitrate nonahydrate [Fe2(NO3)3·9H2O] ethanol solution was coated onto silicon by spin coater at different rotation speeds (rev./min). Carbon nanotubes were synthesized on both Ni and iron (III) nitrate metal oxide layers by the HFPECVD (hot filament plasma-enhanced chemical vapor deposition) method. We used ammonia (NH3) and acetylene (C2H2) for the dilution gas and a carbon precursor for the growth of the carbon nanotubes, respectively. We could observe the relationship between the catalytic cluster density and the nanotube density with scanning electron microscopy (SEM) images. The density of carbon nanotubes on iron (III) nitrate metal oxide was controlled by the rev./min of the spin coater. Transmission electron microscopy (TEM) image shows multi-walled carbon nanotube where the catalyst was found in the tip of the carbon nanotube. Electron dispersive X-ray spectrometry (EDS) peaks for CNT's tip show that it was constituted with nickel and iron, respectively. Raman spectroscopy of nanotubes shows D-band and G-band peaks approximately 1370 and 1590 cm−1.  相似文献   

9.
Catalyst-free growth of nanocrystalline carbon films on silicon substrates under direct current glow discharge in a mixture of hydrogen and methane was studied by scanning and transmission electron microscopy, Raman spectroscopy, as well as X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy (BESSY II, Berlin). The in-time development of the film structure on a carbided silicon substrate includes the formation of diamond-like particles, ultra-thin graphite flakes parallel to the surface, carbon nanowalls nucleated on the stacked flakes and their growth accompanied by a permanent decrease of the structural defect density, and finally nanotube nucleation at the nanowall edges. Based on the observation of the carbon nanotube/nanowall linear size variation in time and using the calculated binding energies and the diffusion thresholds obtained from the literature, we propose that direct attachment of the CH3 radicals to the carbon nanowall edge is the predominant mechanism and the rate-limiting step of its growth, whereas carbon nanotube growth is controlled by radicals diffusing along its outer surface.  相似文献   

10.
K. Sadowska  R. Wiser  E. Jab?onowska 《Carbon》2009,47(6):1501-1510
Multi-walled and single-walled carbon nanotubes were side-wall functionalized with azobenzene and anthraquinone residues, i.e., chemical groups possessing redox activity, for potential utilization in functional catalysis and memory storage devices. Solvent-free synthesis was performed with diazonium salts generated in situ where it was found that it was simple and effective method. Nanotube functionalization was confirmed and characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). It is worth noting, that single-walled carbon nanotubes (SWCNTs) functionalized with azobenzene produced Raman modes typical of substituted azobenzenes with spectral peaks at ∼1137, 1412, and 1447 cm−1. The nanotubes containing electroactive substituents were transferred onto electrode substrates using the Langmuir-Blodgett approach and characterized by cyclic voltammetry. The amount of electroactive groups per mg of nanotubes was calculated based on the peak of cathodic current. A highly reproducible voltammetric response was obtained with a single nanotube layer or multiple nanotube/octadecanol layers. It is believed that devices such as these will be invaluable for future high-performance electrodes.  相似文献   

11.
A facile and efficient covalent functionalization of single‐walled carbon nanotubes (SWCNTs) via peroxide‐mediated free radical covalent attachment and polymerization of zirconium acrylate is reported. The resulting covalently functionalized SWCNTs exhibit improved solubility in organic solvents. The covalently functionalized SWCNTs are characterized by cross polarization magic angle spinning 13C NMR, differential scanning calorimetry, thermogravimetric analysis, x‐ray diffraction, Raman, and infrared spectroscopy. Infrared spectroscopy reveals that carboxylate groups of covalently attached ionomers chelate with zirconium ions and the participating carboxylate groups may be from different ionomer chains leading to cross‐linking the chains. The SWCNT topology, ionic clustering, and π‐electron clouds were explored by transmission electron microscopy. © 2014 American Institute of Chemical Engineers AIChE J, 60: 820–828, 2014  相似文献   

12.
Jianwei Liu  Qin Xie  Weichao Yu 《Carbon》2003,41(11):2101-2104
Carbon nanotubes were synthesized via a single-source precursor route at 500 °C, using iron carbonyl both as carbon source and catalyst. The X-ray power diffraction pattern indicates that the products are hexagonal graphite. Transmission electron microscope (TEM) images of the sample reveal carbon nanotubes with an average inner (outer) diameter of 30 nm (60 nm). High-resolution TEM indicates that fabrication of the carbon nanotube walls was composed of ca. 40 graphene layers. The Raman spectrum shows two strong peaks at 1587 and 1346 cm−1, corresponding to the typical Raman peaks of graphitized carbon nanotubes. This method avoids the separation of raw material from solvent and simplifies the operation process. At the same time, the research provides a new route to large-scale synthesis of carbon nanotubes.  相似文献   

13.
This work reports a structure-property investigation of a conjugated polymer nanocomposite with enhanced conductivity. Regioregular poly(3-hexylthiophene) (rrP3HT) was used to prepare composites with thin, short, multi-walled carbon nanotube (MWNT) addition over a wide range of concentrations. Scanning and transmission electron microscopies demonstrated an excellent dispersion and good wetting properties within the carbon nanotube composites. Coated MWNTs showed superstructures of P3HT self-organized on nanotube surfaces. Changes in the long range order and on the self-ordered mesophase of the bulk material were investigated by infrared and Raman spectroscopies, differential scanning calorimetry and X-ray diffraction. Interplay between charge transport through the semiconducting polymer and carbon nanotube network increased the composite's conductivity after percolation to values close to 10−2 S cm−1.  相似文献   

14.
J.-L Sauvajol  L Alvarez 《Carbon》2002,40(10):1697-1714
We review recent and original results on the vibrational properties of single wall carbon nanotubes (SWNT). We especially focus on calculations and experiments performed on nanotube bundles. So far, the main technique for probing the dynamics has been Raman spectroscopy. Here, we discuss: (i) the relation between frequency of the A1g radial breathing mode and nanotube diameter, (ii) the origin of resonance and the consequences on the profile and intensity of the Raman lines, and (iii) the assignment and resonant behaviour of the Raman lines between 700 and 1000 cm−1. Recently, inelastic neutron scattering techniques (INS) were shown to be effective tools to probe the vibrational density of states of SWNT. We review the INS results and focus on the study of low frequency excitations, especially libration-twist modes and acoustic modes. Both Raman and INS results are analysed in the light of calculations performed in a valence force field model taking into account van der Waals intertubes interactions in the bundles.  相似文献   

15.
Ball milling was used to graft maleated polypropylene (MAPP) on the surface of multiwalled carbon nanotubes (MWCNTs), with a view to preparing MWCNT/polypropylene composites with improved matrix/nanotube compatibility. The occurrence of the grafting reaction was evaluated by FTIR spectroscopy and the yield was quantified by thermogravimetric analysis, as a function of the milling time. Dispersion experiments confirmed the nanotube surface modification of the nanotubes since functionalized MWCNTs remained stably dispersed in an ethanol/xylene solution for more than 48 h after sonication. No evidences of significant structural damage after the mechano-chemical treatment were shown by Raman spectroscopy. Moreover, a layer attributable to the presence of grafted MAPP chains on MWCNT walls was clearly detected by transmission electron microscopy. The average thickness of this amorphous layer was evaluated and compared with quantitative TGA data.  相似文献   

16.
Binder‐free LiFePO4–carbon nanofiber (CNF)–multiwalled carbon nanotube (MWCNT) composites were prepared by electrospinning and thermal treatment to form a freestanding conductive web that could be used directly as a battery cathode without addition of a conductive material and polymer binder. The thermal decomposition behavior of the electrospun LiFePO4 precursor–polyacrylonitrile (PAN) and LiFePO4 precursor–PAN–MWCNT composites before and after stabilization were studied with thermogravimetric analysis (TGA)/differential scanning calorimetry and TGA/differential thermal analysis, respectively. The structure, morphology, and carbon content of the LiFePO4–CNF and LiFePO4–CNF–MWCNT composites were determined by X‐ray diffraction, high‐resolution transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, and elemental analysis. The electrochemical properties of the LiFePO4–CNF and LiFePO4–CNF–MWCNT composite cathodes were measured by charge–discharge tests and electrochemical impedance spectroscopy. The synthesized composites with MWCNTs exhibited better rate performances and more stable cycle performances than the LiFePO4–CNF composites; this was due to the increase in electron transfer and lithium‐ion diffusion within the composites loaded with MWCNTs. The composites containing 0.15 wt % MWCNTs delivered a proper initial discharge capacity of 156.7 mA h g?1 at 0.5 C rate and a stable cycle ability on the basis of the weight of the active material, LiFePO4. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43001.  相似文献   

17.
This work presents the fabrication of carbon nanotube composite membranes with controllable nanotube dimensions (inner diameters and lengths) and surface chemistry and explores their influence on the transport properties and chemical based transport selectivity. These membranes were prepared by growing of vertically aligned multiwalled carbon nanotubes (MWCNTs) inside nanoporous anodic alumina membranes (NAAMs) through a catalyst-free chemical vapour deposition (CVD) approach. The deposition time during CVD process and the length of NAAMs were used to control nanotube dimensions. The thermal annealing and wet and dry oxidation processes were used to control the surface chemistry of inner walls of nanotubes from highly graphitic-hydrophobic to oxygen rich and hydrophilic. The structural features and chemical composition of the prepared membranes are characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The influence of the nanotube dimensions and surface chemistry on molecular transport properties of prepared membranes are assessed by analysing the transport of two models molecules with different hydrophilic–hydrophobic and charge properties. The obtained results reveal that the diffusional flux of model molecules through CNTs-NAAMs can be controlled by nanotube dimensions and surface chemistry of graphitic surface and these parameters can be used to tailor their chemical based molecular separation for specific applications.  相似文献   

18.
R.B. Rakhi  K. Sethupathi 《Carbon》2008,46(13):1656-1663
Multi-walled carbon nanotubes (MWCNTs) have been directly grown over a flexible graphitized carbon fabric by water assisted chemical vapor deposition. Field emission properties are compared with randomly oriented multi-walled and single walled carbon nanotube field emitters obtained by spin coating on to carbon fabric. The MWCNTs and single walled carbon nanotubes (SWCNTs) used in spin coating were characterized by X-ray diffraction (XRD) and Raman spectroscopy. High resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) were used to characterize the field emitters. The use of graphitized carbon fabric as substrate has brought in flexibility in the fabrication of carbon nanotube field emitters. The samples show good field emission properties with a fairly stable emission current. Analysis of field emission based on the Fowler-Nordheim theory reveals current saturation effects at high applied fields for all the samples.  相似文献   

19.
Complex carbon nanotube (CNT) superstructures have been successfully fabricated through a simple synthesis strategy in which natural minerals containing iron have been treated and then used as catalysts, substrates and templates for the growth of the CNT superstructures. These superstructures were characterized with field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy.  相似文献   

20.
Candle wax was used as a precursor for the production of a diamond-nanotube composite in a single step. The composite films were fabricated by sulfur-assisted hot-filament chemical vapor deposition technique. The morphology of the composite films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectra of the films show characteristic diamond band at 1,332 cm−1, D-band around 1,342 cm−1, and graphitic G-band around 1,582 cm−1. The electron energy-loss spectroscopy recorded at the carbon K-edge region shows signature features of diamond and carbon nanotube in the fabricated material. The ability to synthesize diamond-nanotube composites at relatively low temperatures by a single-step process opens up new possibilities for the fabrication of nanoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号