首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different types of graphene‐based composites have been synthesized with simple assays. The multifunctional composites were obtained through loading Fe3O4@phenol formaldehyde resin (PFR) nanoparticles (NPs) synthesized with Fe3O4 NPs, hexamethylene‐tetramine, and phenol onto the surface of graphene oxide sheets in the presence of coupling agent. The Fe3O4@PFR loaded graphene oxide composites bring several merits. It prevents PFR NPs aggregation due to the existed graphene oxide but also endows the composites photothermal conversion property. Furthermore, the graphene‐wrapped PFR composites were prepared by mixing oxide graphene and PFR NPs at 110 °C by means of the good reduction of the hydroxyl group on the surface of PFR NPs to graphene. Under the assistance of chitosan, a building block consists of graphene‐wrapped PFR composites could be obtained. Thus, an ideal method may be developed to synthesize graphene‐wrapped PFR composites for constructing building blocks. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45007.  相似文献   

2.
Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy) nanoparticles (NPs) were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit) was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.  相似文献   

3.
Much attention has been increasingly focused on the applications of noble metal nanoparticles (NPs) for the catalytic degradation of various dyes and pigments in industrial wastewater. We have demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibit high catalytic activity and excellent durability in reductive degradation of MO, R6G, RB. Specific surface area was successfully prepared by simultaneous reduction of Pd(OAc)2 chelating to PEI grafted graphene oxide nanosheets modified with Fe3O4. The as-prepared Pd NPs/Fe3O4-PEI-RGO nanohybrids were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution TEM and energy dispersive X-ray spectroscopy, and UV-lambda 800 spectrophotometer, respectively. The catalytic activity of Pd NPs/Fe3O4-PEI-RGO nanohybrids to the degradation of MO, R6G, RB with NaBH4 was tracked by UV-visible spectroscopy. It was clearly demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibited high catalytic activity toward the degradation of dyes and pigments, which could be relevant to the high surface areas of Pd NPs and synergistic effect on transfer of electrons between reduced graphene oxide (RGO), PEI and Pd NPs. Notably, Pd NPs/Fe3O4-PEI-RGO nanohybrids were easily separated and recycled thirteen times without obvious decrease in system. Convincingly, Pd NPs/Fe3O4-PEI-RGO nanohybrids would be a promising catalyst for treating industrial wastewater.  相似文献   

4.
Fuan He  Dong Ma  Chiwah Leung 《Carbon》2010,48(11):3139-3144
Hybrids of graphene oxide (GO) nanosheets and surface-modified Fe3O4 nanoparticles (NPs) were fabricated by a two-step process. First, Fe3O4 was modified by tetraethyl orthosilicate and (3-aminopropyl) triethoxysilane to introduce amino groups on its surface. Second, the amino groups of Fe3O4 were reacted with the carboxylic groups of GO with the aid of 1-ethyl-3-(3-dimethyaminopropyl)carbodiimide and N-hydroxysuccinnimide to form a GO-Fe3O4 hybrid. The attachment of Fe3O4 NPs on the GO nanosheet surface was confirmed by transmission electron microscopy and Fourier-transform infrared spectroscopy. The adsorption capacity of GO-Fe3O4 for methylene blue and neutral red cationic dyes was as high as 190.14 and 140.79 mg/g, respectively. The GO-Fe3O4 hybrids could be reduced to form graphene-Fe3O4 hybrids by using NaBH4 as reducing agent and be used to prepare magnetic GO films.  相似文献   

5.
Fe3O4 nanoparticles-decorated reduced graphene oxide magnetic nanocomposites (Fe3O4/rGO NCs) were prepared by a facile one-step strategy, and further used as heterogeneous Fenton-like catalysts for catalytic wet hydrogen peroxide oxidation (CWHPO) of methylene blue (MB) at 25 °C and atmospheric pressure. The effects of variables such as the Fe3O4/rGO with the mass ratio of rGO, initial pH, MB concentration and H2O2 dosage were investigated. The Fe3O4/rGO NCs with rGO mass ratio of 10.0 wt % showed the highest H2O2-activating ability, which was six-fold than that of pure Fe3O4 nanoparticles (NPs). The resulting catalysts demonstrated high catalytic activity in a broad operation pH range from 5 to 9, and still retained 90.5 % catalytic activity after reuse in five cycles. Taking advantage of the combined benefits of rGO and magnetic Fe3O4 NPs, these Fe3O4/rGO NCs were confirmed as an efficient heterogeneous Fenton-like catalyst for CWHPO to treat organic pollutants. And a reasonable catalytic mechanism of Fe3O4/rGO NCs was proposed to interpret the degradation process.  相似文献   

6.
In this article, conductive and magnetic nanocomposites composed of polypyrrole (PPy), magnetite (Fe3O4) nanoparticles (NPs), silver (Ag) NPs, have been successfully synthesized with a two step process. First, the PPy/Fe3O4 was prepared by the ultrasonic in situ polymerization. Next, the PPy/Fe3O4/Ag was synthesized through the electrostatic adsorption. The products were characterized by fourier‐transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), Thermogravimetric (TG), conductivity and magnetization analysis, and the results showed that the Ag NPs with the good conductivity coated uniformly on the surface of PPy/Fe3O4 and improved the conductivity of PPy/Fe3O4/Ag composites. In addition, as compared with PPy/Fe3O4, PPy/Fe3O4/Ag composites also have the excellent electro‐magnetic property and enhanced thermostability. POLYM. COMPOS., 35:450–455, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
Magnetic spindle-like Fe3O4 mesoporous nanoparticles with a length of 200 nm and diameter of 60 nm were successfully synthesized by reducing the spindle-like α-Fe2O3 NPs which were prepared by forced hydrolysis method. The obtained samples were characterized by transmission electron microscopy, powder X-ray diffraction, attenuated total reflection fourier transform infrared spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and nitrogen adsorption-desorption analysis techniques. The results show that α-Fe2O3 phase transformed into Fe3O4 phase after annealing in hydrogen atmosphere at 350°C. The as-prepared spindle-like Fe3O4 mesoporous NPs possess high Brunauer-Emmett-Teller (BET) surface area up to ca. 7.9 m2 g-1. In addition, the Fe3O4 NPs present higher saturation magnetization (85.2 emu g-1) and excellent magnetic response behaviors, which have great potential applications in magnetic separation technology.  相似文献   

8.
We report in vitro and in vivo magnetic resonance (MR) imaging of C6 glioma cells with a novel acetylated 3-aminopropyltrimethoxysilane (APTS)-coated iron oxide nanoparticles (Fe3O4 NPs). In the present study, APTS-coated Fe3O4 NPs were formed via a one-step hydrothermal approach and then chemically modified with acetic anhydride to generate surface charge-neutralized NPs. Prussian blue staining and transmission electron microscopy (TEM) data showed that acetylated APTS-coated Fe3O4 NPs can be taken up by cells. Combined morphological observation, cell viability, and flow cytometric analysis of the cell cycle indicated that the acetylated APTS-coated Fe3O4 NPs did not significantly affect cell morphology, viability, or cell cycle, indicating their good biocompatibility. Finally, the acetylated APTS-coated Fe3O4 nanoparticles were used in magnetic resonance imaging of C6 glioma. Our results showed that the developed acetylated APTS-coated Fe3O4 NPs can be used as an effective labeling agent to detect C6 glioma cells in vitro and in vivo for MR imaging. The results from the present study indicate that the developed acetylated APTS-coated Fe3O4 NPs have a potential application in MR imaging.  相似文献   

9.
Fe3O4 nanoparticles (Fe3O4NPs) were prepared by chemical coprecipitation. Deep eutectic solvents (DESs) (ChCl/glycol, 1/2, n/n) were used to modify Fe3O4NPs. The obtained Fe3O4NPs and DESs–Fe3O4NPs were applied for purification of ferulic acid from wheat bran by magnetic solid-phase extraction (MSPE). The satisfactory extraction recoveries for ferulic acid (88.7%) were obtained by changing different washing and eluted solvents. The recovery of the proposed method at three spiked level analysis was 77.9–97.5%, with the relative standard deviation less than 4.5%. DESs–Fe3O4NPs showed good performance for ferulic acid and the proposed approach might offer a novel method for purifying complex samples.  相似文献   

10.
We describe a novel approach for coupling pristine graphene with superparamagnetic iron oxide nanoparticles to create dispersed, magnetically responsive hybrids. The magnetic iron oxide (Fe3O4) nanoparticles are synthesized by a co-precipitation method using ferric (Fe3+) and ferrous (Fe2+) salts and then grafted with polyvinylpyrrolidone (PVP). These PVP-grafted Fe3O4 nanoparticles are then used to stabilize colloidal graphene in water. The PVP branches non-covalently attach to the surface of the pristine graphene sheets without functionalization or defect creation. These Fe3O4–graphene hybrids are stable against aggregation and are highly responsive to external magnetic fields. These hybrids can be freeze-dried to a powder or magnetically separated from solution and still easily redisperse while retaining magnetic functionality. At all stages of synthesis, the Fe3O4–graphene hybrids display no coercivity after being brought to magnetic saturation, confirming superparamagnetic properties. Microscopy and light scattering data confirm the presence of pristine graphene sheets decorated with Fe3O4 nanoparticles. These materials show promise for multifunctional polymer composites as well as biomedical applications and environmental remediation.  相似文献   

11.
The three-dimensional porous Fe3O4/graphene composite foam as a new kind of absorbing composite with electrical loss and magnetic loss was successfully synthesized by a facile method. Fe3O4 was evenly attached on structure of graphene sheets which overlapped with each other to form three-dimensional porous graphene foam. The results revealed that when the mass ratio of graphene oxide (GO) and Fe3O4 was 1:1, the Fe3O4/graphene composite foam possessed the best absorption properties: the minimum reflection loss was up to ??45.08?dB when the thickness was 2.5?mm and the bandwidth below ??10?dB was 6.7?GHz when the content of the composite foam absorbents was just 8%. The micron-sized three-dimensional porous structure provided more propagation paths, enhancing the energy conversion of incident electromagnetic waves. The addition of Fe3O4 contributed to improving the impedance matching performance and magnetic loss. The three-dimensional porous Fe3O4/graphene composite foam was a kind of high-efficiency wave absorber, providing a new idea for the development of microwave absorbing materials.  相似文献   

12.
In this work, using monodispersed sulfonated polystyrene (SPS) microspheres as carriers, FeCl3·6H2O and FeSO4·7H2O as precursors, NaOH as precipitant in the presence of graphene oxide (GO), SPS/Fe3O4/GO micro-nano composites were fabricated by a simple one-pot method employing an inverse coprecipitation in-situ compound technology. The SPS/Fe3O4/GO micro-nano composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffractometer, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherms and vibrating sample magnetometer. The results show that the SPS/Fe3O4/GO micro-nano composites were fabricated with SPS as core, GO and Fe3O4 nanoparticles as shell. The SPS/Fe3O4/GO micro-nano composites had larger BET specific surface area, average pore width and micropore volume than the pure SPS microspheres. Meanwhile, the SPS/Fe3O4/GO micro-nano composites had superparamagnetism and hydrophilic property. The saturation magnetization (Ms) of the SPS/Fe3O4/GO micro-nano composites was 10.86 emu/g, which was enough to ensure the convenient magnetic separation of solid and liquid phase.  相似文献   

13.
《Ceramics International》2017,43(9):7311-7320
A facile ultrasonic method has been successfully developed for the fabrication of multifunctional Fe3O4@carbon dot/Ag (Fe3O4@C-dot/Ag) nanocubes (NCs), and the resulting materials are well characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Vibrating sample magnetometer (VSM) and fluorescence measurements. The Ag nanoparticles (NPs) are uniform and well dispersed on the surface of Fe3O4@C-dot, while maintaining the shape and the size of the core-shell Fe3O4@C-dot NCs. In addition, its catalytic activities are evaluated by measuring the reduction of p-nitroaniline (p-NA) and crystal violet (CV), and the composite materials exhibit excellent catalytic activity towards reduction of p-NA and CV dye, which is superior to most reported catalysts. The good catalytic performance of Fe3O4@C-dot/Ag NCs may be attributed to the specific characteristics of its nanostructure and the synergistic effect on the delivery of electrons between Ag NPs and Fe3O4@C-dot NCs. Furthermore, the as-prepared catalysts also show good activity for the reduction of other nitrobenzene analogs. The effect of solvent and reducing agent was also studied on the catalytic activity of Fe3O4@C-dot/Ag NCs. Most importantly, the Fe3O4@C-dot/Ag catalyst shows excellent recycling stabilities, which can be potentially applied in the fields of catalysis and green chemistry.  相似文献   

14.
Ni0.5Co0.5Fe2O4/graphene composites were synthesized successfully via one-step hydrothermal method. The crystal structure, morphology and corresponding elemental distribution, electromagnetic parameters and microwave absorption performances of the as-prepared composites were measured by XRD, SEM, TEM and VNA, respectively. The results indicated that the microwave absorbing performance can be obviously enhanced through the addition of graphene in a suitable range, the magnetic loss plays a dominant contribution for the microwave absorption of composites. The maximum reflection loss of ?30.92?dB at 0.84?GHz with a ?10?dB bandwidth over the frequency range of 0.58–1.19?GHz is obtained when the composite contains 12?wt% graphene and the thickness of sample is 4?mm. This investigation presents a simple method to prepare Ni0.5Co0.5Fe2O4/graphene composites with excellent microwave absorption performance in the low frequency band of 0.1–3?GHz.  相似文献   

15.
Magnetite (Fe3O4) nanoparticles were prepared by solvothermal method and its composites with reduced graphene oxide namely FG1, FG2, and FG3 (changing magnetite precursor loading 0.1, 0.5, and 1 respectively) were used as adsorbents for the removal of methyl violet (MV) dye. The structural and morphological results confirm that rGO sheets were decorated with Fe3O4 and it ensures the variation of active sites toward dye removal property. The maximum adsorption capacity obtained for FG2 was 196 mg/g. The adsorption isotherms and kinetics better fit Langmuir and pseudo-second-order kinetic model for FG1 and FG2. Increasing of Fe3O4 loading on rGO reduces the dye adsorption sites and too low Fe3O4 loading affects the magnetic separation. The optimal loading of Fe3O4 on rGO is important parameter for the adsorption process and fast separation of adsorbent.  相似文献   

16.
《Ceramics International》2022,48(4):4886-4896
Recent studies show that the chemical composition and shape of magnetic nanoparticles (NPs) play an important role in their properties. In particular, the bimagnetic NPs display useful and in many cases, more interesting properties than single-phase NPs. In this work, we prepared Fe3O4 and CoFe2O4 cube-like NPs and bimagnetic hard/soft (CoFe2O4/Fe3O4) and soft/hard (Fe3O4/CoFe2O4) nanocomposites (core/coating) using a facile and eco-friendly co-precipitation method that allows the synthesis of the cube-like NPs at temperatures near room temperature. The phase purity and the crystallinity of the NPs with a spinel structure were confirmed by the X-ray diffraction and infrared spectra techniques. Transmission electron microscopy (TEM) images revealed that the NPs have a cubic-like shape with an average dimension of 20 nm. Energy dispersive X-ray analysis, Mössbauer spectroscopy and SQUID magnetic measurements indicated the co-existence of Fe3O4 and CoFe2O4 phases in nanocomposites. In addition, the hysteresis loops exhibited a single-phase behavior in the nanocomposites that indicates there is a good exchange-coupling interaction between the hard and soft magnetic phases. The CoFe2O4/Fe3O4 nanocomposites presented a larger saturation magnetization than the CoFe2O4 NPs that is effective for their use in magnetic hyperthermia. Finally, we studied the hyperthermia properties of samples in an alternating magnetic field with a frequency of 276 kHz and field amplitude of 13.9 kA/m. Our results showed that magnetic hyperthermia efficiency simultaneously depends on the composition of samples along with magnetic anisotropy and saturation magnetization.  相似文献   

17.
We demonstrate a facile synthesis of monodisperse magnetite (Fe3O4) nanoparticles (NPs) via a simple wet chemical route at 180°C using oleylamine (C18H37N), which serves as a solvent, ligand, and surfactant. The particles have a narrow size distribution centered at about 10 nm. To provide better electron conductivity and structural stability, the as‐synthesized particles are given a carbon nanocoating by pyrolysis of the residual surfactant on their surface. This pyrolysis forms a uniform thin nanocoating on each particle, and a core/shell Fe3O4/carbon NP network was thus obtained. The core/shell Fe3O4/carbon electrode shows better reversible capacity, cycle life, and rate capability than a bare Fe3O4 NP electrode because of its efficient electron transport and stress relaxation provided by the thin carbon layer.  相似文献   

18.
We describe the production of graphene-based composites for energy storage, obtained by a combination of electrochemical and solution processing techniques. Electrochemically exfoliated graphene oxide sheets (EGO) are produced using an original setup that allows fast expansion of graphite flakes and efficient exfoliation of expanded graphite via an electrochemical route. The sheets are deposited on a sacrificial nickel foam together with an iron hydroxide colloidal precursor. Calcination treatment simultaneously renders the EGO foam conductive and transforms Fe(OH)3 into hematite (α-Fe2O3), yielding a nanoporous Fe2O3 layer on the surface of the mesoporous EGO foam, creating an ideal structure for lithium storage. The obtained graphene/metal oxide hybrid is a continuous, electrically conductive three-dimensional (3D) composite featuring a hierarchical meso–nano porous structure. A systematic study of these composites, varying the Fe2O3:EGO ratio, is then performed to maximize their performance as nanostructured electrodes in standard coin cell batteries.  相似文献   

19.
A Fe3O4 nonaparticles coated with acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid copolymer(Fe3O4-Polymer NPs) was synthesized by emulsion polymerization. The structure of Fe3O4-Polymer NPs was then characterized by infrared spectroscopy, thermo-gravimetric analysis, and scanning electron microscopy. Meanwhile, the rheological properties of Fe3O4-Polymer NPs solution were systematically studied. The results showed that when dosage of hydrophobic Fe3O4-Oleic NPs is 10%, the synthesized Fe3O4-Polymer NPs was with the best viscosity enhancement performance, and the maximum saturation magnetization could reach to 20.0 emu/g. The apparent viscosity value of 5000 mg/L magnetic nano-composite solution was 154.6 mPa·s at 30°C. It shows strong viscosity enhancement ability and good temperature performance. Hence, it has great application potential in well stimulation of medium and high temperature oil and gas reservoirs.  相似文献   

20.
A magnetic nanocomposite of citric‐acid‐functionalized graphene oxide was prepared by an easy method. First, citric acid (CA) was covalently attached to acyl‐chloride‐functionalized graphene oxide (GO). Then, Fe3O4 magnetic nanoparticles (MNPs) were chemically deposited onto the resulting adsorbent. CA, as a good stabilizer for MNPs, was covalently attached to the GO; thus MNPs were adsorbed much more strongly to this framework and subsequent leaching decreased and less agglomeration occurred. The attachment of CA onto GO and the formation of the hybrid were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction spectrometry and transmission electron microscopy. The specific saturation magnetization of the magnetic CA‐grafted GO (GO‐CA‐Fe3O4) was 57.8 emu g?1 and the average size of the nanoparticles was found to be 25 nm by transmission electron microscopy. The magnetic nanocomposite was employed as an adsorbent of methylene blue from contaminated water. The adsorption tests demonstrated that it took only 30 min to attain equilibrium. The adsorption capacity in the concentration range studied was 112 mg g?1. The GO‐CA‐Fe3O4 nanocomposite was easily manipulated in an external magnetic field which eases the separation and leads to the removal of dyes. Thus the prepared nanocomposite has great potential in removing organic dyes. © 2014 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号