共查询到20条相似文献,搜索用时 78 毫秒
1.
事件信息抽取是目前信息抽取领域的主要研究方向,为了提高事件信息抽取的准确率,提出一种基于介词用法的事件信息抽取方法.通过对介词用法的研究,掌握了不同介词用法在语言结构中的不同作用,以介词用法信息为背景,完成抽取规则编写.针对规则,完成抽取系统的编写,以达到理想的抽取结果.采用郑州大学提供的语料,通过大量实验,结果准确率、召回率及F值分别达到90.88%、86.92%、88.86%,表明了该方法的有效性. 相似文献
2.
3.
微博客蕴含交通事件信息抽取的自动标注方法 总被引:1,自引:0,他引:1
微博客文本蕴含丰富的实时交通事件信息,能够为现有交通信息采集手段提供补充。然而,当前事件抽取方法缺少对地理实体关系的判断过程,对涉及多个地理实体及关系表达的地理空间要素抽取效果不佳,难以准确识别交通事件信息的位置描述。该文提出一种自动标注方法,将地理实体关系识别引入事件抽取过程来解决这一问题。该方法利用条件随机场模型实现交通事件角色标注,利用支撑向量机模型实现角色关系与要素关系标注,完成了交通事件信息空间要素识别。以新浪微博为数据源开展的实验分析表明,该文所提出的微博客蕴含交通事件抽取方法,正确率和召回率均达到90%,优于现有的基于模式匹配的抽取方法。 相似文献
4.
对介词用法自动识别的研究是现代汉语虚词用法知识库建设的重要组成部分.在已有工作的基础上,分析对比了规则方法与统计方法的优劣,提出一种规则与条件随机场统计模型相结合的介词用法自动识别算法.该算法在2000年2月-5月《人民日报》语料的介词用法自动识别测试中,准确率比单独使用规则方法和统计方法分别提高了14.64%及5.22%. 相似文献
5.
事件抽取旨在从非结构化的文本中提取人们感兴趣的信息,并以结构化的形式呈现给用户.当前,大多数中文事件抽取系统采用连续的管道模型,即:先识别事件触发词,后识别事件元素.其容易产生级联错误,且处于下游的任务无法将信息反馈至上游任务,辅助上游任务的识别.将事件抽取看作序列标注任务,构建了基于CRF多任务学习的中文事件抽取联合模型.针对仅基于CRF的事件抽取联合模型的缺陷进行了两个扩展:首先,采用分类训练策略解决联合模型中事件元素的多标签问题(即:当一个事件提及中包含多个事件时,同一个实体往往会在不同的事件中扮演不同的角色).其次,由于处于同一事件大类下的事件子类,其事件元素存在高度的相互关联性.为此,提出采用多任务学习方法对各事件子类进行互增强的联合学习,进而有效缓解分类训练后的语料稀疏问题.在ACE 2005中文语料上的实验证明了该方法的有效性. 相似文献
6.
个人简历(Curriculum Vitae,Vita)通常包含了丰富的数据,如个人信息、教育背景以及工作经历等。从大量的个人简历中抽取出有用的信息并提供检索服务,可以提供更加全面和完整的个人资料。个人简历中包含的信息可以看成是按时间排序的事件序列。进一步地,可以从不同的个人简历所包含的事件中挖掘出事件之间的关联关系。提出了一个从个人简历中提取并检索事件的框架,它可以自动地从互联网上搜索并下载个人简历文档,并从中提取出感兴趣的事件保存在数据库里,以进一步查询和检索事件。所完成的工作包括:(1)提出了一个事件表示模型,用于描述事件的基本属性及检索事件;(2)基于条件随机场提出了一个概率模型,用于从个人简历中自动提取事件;(3)通过挖掘事件属性之间的共现性,提出了基于事件的检索方法。 相似文献
7.
8.
传统的事件因果关系抽取方法只能覆盖文本中的部分显式因果关系。针对这种不足,提出一种基于层叠条件随机场模型的事件因果关系抽取方法。该方法将事件因果关系的抽取问题转化为对事件序列的标注问题,采用层叠(两层)条件随机场标注出事件之间的因果关系。第一层条件随机场模型用于标注事件在因果关系中的语义角色,标注结果传递给第二层条件随机场模型用于识别因果关系的边界。实验表明,本文方法不仅可以覆盖文本中的各类显式因果关系,并且均能取得较好的抽取效果,总体抽取效果的F1值达到85。3%。 相似文献
9.
《计算机应用与软件》2016,(8)
随着互联网的快速发展,网络信息的事件抽取已然成为研究热点。针对微博中的开放域事件抽取问题进行深入研究,实现一个事件抽取和分类系统。主要通过序列标记方法提取微博语句中的命名实体和事件短语表征相应事件,利用非监督分类方法对事件进行分类,将每个日期下各类别的事件根据重要性排序之后,以日历的形式展现出来。其中,运用条件随机场模型完成事件抽取中的序列标记任务,非监督分类方法选用了LDA主题模型。实验证明方法有效可行,命名实体识别和事件短语抽取均取得较高的准确率和召回率。 相似文献
10.
信息抽取技术用于从非结构化文本数据中提取关注度较高的信息。事件抽取技术是信息抽取研究领域中具有挑战的研究方向。事件抽取的目的是从非结构化文本数据中抽取描述事件的关键元素,并以结构化的方式呈现。事件抽取被看作序列标注任务,首先采用ALBERT预训练模型学习特征,其次引入条件随机场CRF模型提高序列标注性能,最后完成事件类型以及事件要素的识别分类。在ACE2005标准语料库上的实验结果表明,与现有模型相比,ALBERT-CRF模型在触发词识别和分类任务上的召回率和F值均有所提高。 相似文献
11.
12.
13.
郑轶 《计算技术与自动化》2015,(4):132-136
近年来,信息抽取成为自然语言处理的一个热点,同时也是难点。针对不同的问题,大家提出了不同的方法,而大多数的方法是基于启发式规则或者抽象成分类问题,本文将从人物百科中抽取人物信息看成是一个序列标注的问题,利用条件随机场对生语料进行序列标注。此外,文中详细介绍数据分析的方法以及特征选取方法,所提出的方法直接从生语料中抽取,节省了大部分方法的数据预处理部分,同时避开了大部分方法使用的句法分析的特征,有效地提高了信息抽取的效率。在文章的最后做了两组对比实验,实验结果表明,本方法能够非常准确地从HTML生语料中抽取出人物信息。 相似文献
14.
司法数据中的事件主要用于描述案件中犯罪主体和客体之间行为状态的改变,通过识别司法事件能有效地支撑智能化辅助办案研究。目前,现有事件抽取技术主要通过触发词识别事件,然后根据预定义的模板抽取对应参数。其主要缺点是只能抽取预定义的事件类型,并且抽取的事件不一定是句子语义表达的中心。针对上述问题,提出一种基于谓语中心词的司法事件定义方法,并搭建一个结合字词语义信息的神经网络模型。该模型采用字的Embedding获取字的语义信息,并通过CNN获得词特征信息。将词特征信息结合后,使用Cross-BiLSTM交叉学习字词交互信息在上下文的依赖表示,由CRF计算出每个字的最优标签路径。通过实验表明,该模型在司法数据集上的F1值达到84.41%,超出对比方法4.8%。 相似文献
15.
基于时空分析的线索性事件的抽取与集成系统研究 总被引:6,自引:0,他引:6
信息抽取技术能够提供高质量的检索服务。本文面向网络新闻事件,对人们感兴趣的事件关键信息进行了抽取和集成。系统中采用了如下的方法、策略: (1) 利用句型模板构造抽取规则,然后直接从经过时间短语和空间短语识别和规范化处理的文本中抽取事件信息,从而跳过了深层句法分析,降低了实现系统的难度; (2) 利用事件的规范化的时空信息关联不同文档中的同一事件,进行事件合并; (3) 文档发生事件转移时对文档进行事件切分,从而解决了文档内不同事件信息的归并问题。初步实验结果表明:本文采用的方法和策略是有效的。 相似文献
16.
事件抽取是从非结构化的自然语言文本中自动抽取用户感兴趣的事件信息, 并以结构化的形式表示出来. 事件抽取是自然语言处理与理解中的重要方向, 在政府公共事务管理、金融业务、生物医学等不同领域有着很高的应用价值. 根据对人工标注数据的依赖程度, 目前基于深度学习的事件抽取方法主要分为两类: 有监督和远程监督学习方法. 对当前深度学习中事件抽取技术进行了全面的综述. 围绕有监督中CNN、RNN、GAN、GCN与远程监督等方法, 系统地总结了近几年的研究情况, 并对不同的深度学习模型的性能进行了详细对比与分析. 最后, 对事件抽取面临的挑战进行了分析, 针对研究趋势进行了展望. 相似文献
17.
日志事件提取指将非结构化的日志消息解析为系统中对应的事件,是多数日志分析中必不可少的前置工作.传统的日志事件提取以批处理方法为主,需要等待所有日志数据到达再进行处理,实时性不佳.能够进行实时日志采集并处理的流处理方法逐渐成为主要研究方向,但已有的流处理方法在解析模型的构建方面存在缺陷,准确性不够高.针对上述问题,提出了... 相似文献
18.
针对事件抽取存在未充分利用句法关系、论元角色缺失的情况,提出了基于双重注意力机制的事件抽取(event extraction based on dual attention mechanism,EEDAM)方法,有助于提高事件抽取的精确率和召回率.首先,基于4种嵌入向量进行句子编码,引入依赖关系,构建依赖关系图,使深度神经网络可以充分利用句法关系.然后,通过图转换注意网络生成新的依赖弧和聚合节点信息,捕获长程依赖关系和潜在交互,加权融合注意力网络,捕捉句中关键的语义信息,抽取句子级事件论元,提升模型预测能力.最后,利用关键句检测和相似性排序,进行文档级论元填充.实验结果表明,采用基于双重注意力机制的事件抽取方法,在ACE2005数据集上,较最佳基线联合多中文事件抽取器(joint multiple Chinese event extractor,JMCEE)在精确率、召回率和F1-score分别提高17.82%、4.61%、9.80%;在大坝安全运行日志数据集上,较最佳基线JMCEE在精确率、召回率和F1-score上分别提高18.08%、4.41%、9.93%. 相似文献
19.