首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiAlN/VN multilayer coatings exhibit excellent dry sliding wear resistance and low friction coefficient, reported to be associated with the formation of self-lubricating V2O5. To investigate this hypothesis, dry sliding ball-on-disc wear tests of TiAlN/VN coatings on flat stainless steel substrates were undertaken against Al2O3 at 25 °C, 300 °C and 635 °C in air. The coating exhibited increased wear rate with temperature. The friction coefficient was 0.53 at 25 °C, which increased to 1.03 at 300 °C and decreased to 0.46 at 635 °C. Detailed investigation of the worn surfaces was undertaken using site-specific transmission electron microscopy (TEM) via focused ion beam (FIB) microscopy, along with Fourier transform infrared (FTIR) and Raman spectroscopy. Microstructure and tribo-induced chemical reactions at these temperatures were correlated with the coating’s wear and friction behaviour. The friction behaviour at room temperature is attributed to the presence of a thin hydrated tribofilm and the presence of V2O5 at high temperature.  相似文献   

2.
The oxidation behavior of hot-pressed Al2O3–TiC–Co composites prepared from cobalt-coated powders has been studied in air in the temperature range from 200 °C to 1000 °C for 25 h. The oxidation resistance of Al2O3–TiC–Co composites increases with the increase of sintering temperature at 800 °C and 1000 °C. The oxidation surfaces were studied by XRD and SEM. The oxidation kinetics of Al2O3–TiC–Co composites follows a rate that is faster than the parabolic-rate law at 800 °C and 1000 °C. The mechanism of oxidation has been analyzed using thermodynamic and kinetic considerations.  相似文献   

3.
The sintered polycrystalline diamond compacts (PDCs) were annealed at 200 °C, 300 °C, 400 °C, 500 °C, 600 °C, 700 °C, and 800 °C under vacuum environment. The friction and wear behaviors of the annealed PDCs sliding against Si3N4 balls were evaluated by a ball-on-disc tribometer in ambient atmosphere. The compositions, microstructures and surface morphologies of PDC discs and wear scars on Si3N4 balls were characterized by energy dispersive spectroscopy (EDS), Raman spectroscopy, and scanning electron microscopy (SEM), respectively. The experimental results demonstrated that the steady friction coefficient decreased at the annealing temperature of 200 °C and increased with annealing temperature increasing. While, the wear rate of PDCs and Si3N4 balls increased at 200 °C, and sharply decreased from 300 to 800 °C. The surface morphologies and Raman spectra revealed that the variation law of friction coefficient curves at different annealing temperatures was attributed to carbonaceous transfer films formed on Si3N4 balls. The residual stress on PDC surface was reduced after the annealing treatment, thus fine diamond grains were easily extracted from PDC surface onto the contact area during the tribotest which led to the wear of PDC and abrasive wear for both counter parts. These results revealed that the friction and wear behaviors of PDC were significantly affected by the vacuum annealing temperature.  相似文献   

4.
Wear properties of CrN/NbN superlattice coating deposited on the WC-12Co substrate was investigated while using 100Cr6 steel, SiC and Al2O3 ball as counterbodies for friction pairs. The value of friction coefficient and wear rate was lowest at ~ 0.01 and 2.6 × 10 7 mm3/Nm, respectively, when coating slides against Al2O3 ball. In contrast, friction coefficient and wear rate were increased while sliding with steel and SiC ball. The deviation in friction coefficient was described by mechanical and chemical properties of these balls. Hardness of Al2O3 and SiC ball was comparable but significant deviation in friction coefficient was observed. That is related to oxidation resistance of these balls which is high for Al2O3 compared to SiC ball as evident by Raman analysis of the wear track. However, hardness and oxidation resistance were low for steel ball which shows oxidational wear mechanism.  相似文献   

5.
Al2O3-reinforced molybdenum (Mo) composites were successfully prepared by powder metallurgy to improve the wear resistance of Mo components at high temperature. The reinforced Al2O3 particles are uniformly distributed in the Mo matrix; thus, the Al2O3/Mo composite is harder than monolithic Mo. The friction coefficients of both monolithic Mo and the Al2O3/Mo composite decrease by 37% and 42%, respectively, at 700 °C compared with those at room temperature (self-lubricating phenomenon). This phenomenon is attributed to the formation of very soft MoO3 and FeMoO4 metal oxides on the friction surface at high temperature. The Al2O3/Mo composite has better wear resistance than monolithic Mo at both room temperature and at 700 °C. The notable resistance of the composite particularly at 700 °C can be attributed to its increased hardness and the soft tribofilm forming on the worn surface.  相似文献   

6.
The sliding behaviors of two typical high-temperature alloys of GH2132 and GH605 against WC and SiC balls were investigated at environments from room temperature to 800 °C with a sliding speed of 50 to 125 m/min under a load of 10 to 20 N. The wear performances of high-temperature alloys, WC and SiC balls were rated and their mechanisms were discussed. The four sliding pairs exhibited the markedly different sliding behaviours, in which the GH2132/WC sliding pair had the maximum friction coefficient with 125 m/min under 10 N at room temperature. The variation trends of ball wear rates with the ambient temperature were at odds with those of friction coefficient. The higher friction coefficient did not always lead balls to suffer from the higher wear rate. The maximum worn depth approximated to 250 μm for the GH2132/WC sliding pair with higher friction coefficient. The GH605/WC sliding pair exhibited the lower friction coefficient and lower worn depth of plate. Whether at room temperature or high temperature, the GH605/SiC sliding pair significantly exhibited good wear resistance with a minor damage of ball and plate despite of its higher friction coefficient.  相似文献   

7.
《Intermetallics》2005,13(7):733-740
For structural application of moving components, the tribological properties (friction and wear) are considered to be one of the major factors controlling the performance. In recent years, lightweight metal matrix composites (MMC) have received wider attention for their technological application, such as automotive parts etc. This paper reports the tribological behavior of Al based composites reinforced with in situ TixAly and Al2O3 particles. The wear experiments were performed on a newly designed fretting tribometer to evaluate the role of intermetallic particulates on the wear performance of in situ composites against bearing steel under the ambient conditions of temperature (22–25 °C) and humidity (50–55% RH). Based on the topographical observation of the worn surfaces the plausible wear mechanisms are discussed. An important result is that Al-based composites with 20 vol% reinforcement exhibit an extremely low coefficient of friction of 0.2 under unlubricated conditions. Also, around five times lower wear volume is measured with 20 vol% composites when compared to unreinforced Al.  相似文献   

8.
In this study, we analyzed the high temperature tribological behavior of AlCrTiN coatings deposited on WC substrates by low cathodic arc technique. The coatings chemical composition, Al 31 at.%, Cr 16 at.%, Ti 7 at.% and N 46 at.%, and the bonding state were evaluated by X-ray photoelectron spectroscopy. The mechanical properties of the coatings were studied by scratch-test and nanohardness depth sensing indentation. The morphology of the coatings surface, ball scars, wear tracks and wear debris as well as the oxidized samples was examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The structure was analyzed using X-ray diffraction (XRD). Wear testing was carried out using a high temperature tribometer (pin-on-disc) with alumina balls as counterparts. The evaluation of the friction coefficient with the number of cycles (sliding distance) was assessed at different temperatures and the wear rates of the coatings and balls were determined; the maximum testing temperature was 800 °C. The coating showed an excellent thermal stability and wear resistance. The friction reached a maximum at 500 °C and then decreased, whereas the wear rate was negligible up to 600 °C and increased significantly at higher temperatures.  相似文献   

9.
Fundamental phenomena governing the tribological mechanisms in sputter deposited amorphous MoS2/Sb2O3/Au nanocomposite coatings are reported. In dry environments the nanocomposite has the same low friction coefficient as pure MoS2 (~0.007). However, unlike pure MoS2 coatings, which wear through in air (50% relative humidity), the composite coatings showed minimal wear, with wear factors of ~1.2–1.4 × 10?7 mm3 Nm?1 in both dry nitrogen and air. The coatings exhibited non-Amontonian friction behavior, with the friction coefficient decreasing with increasing Hertzian contact stress. Cross-sectional transmission electron microscopy of wear surfaces revealed that frictional contact resulted in an amorphous to crystalline transformation in MoS2 with 2H-basal (0 0 0 2) planes aligned parallel to the direction of sliding. In air the wear surface and subsurface regions exhibited islands of Au. The mating transfer films were also comprised of (0 0 0 2)-oriented basal planes of MoS2, resulting in predominantly self-mated “basal on basal” interfacial sliding and, thus, low friction and wear.  相似文献   

10.
In this work, the oxidation behavior of SiC ceramics sintered with additives based on AlN–Y2O3 system was investigated. SiC ceramics doped with different AlN:Y2O3 contents of 8.4:11.6 wt.% or 2.2:17.8 wt.% were sintered at 2080 °C for 1 h under nitrogen atmosphere, obtaining ceramics with relative density near to 96% in both compositions. Samples were oxidized at 1200 °C, 1300 °C or 1400 °C in air for up to 120 h. Oxidation was monitored by the weight gain of the samples as function of exposition time and temperature. A parabolic growth of the oxidation layer has been observed and the coefficient of the growth rate has been determined by relating the weight gain and the surface area. In oxidation testing performed at 1200 °C, samples containing lower Y2O3 amounts showed greater oxidation resistance; however, by raising the temperature (to 1400 °C), the samples containing higher Y2O3 amounts showed greater oxidation resistance. The oxidized layer characterized by X-ray diffraction presented SiO2 and Y2Si2O7 as crystalline phases. Furthermore, the activation energy for oxidation of 780 kJ/mol and 405 kJ/mol for AlN:Y2O3 contents of 8.4:11.6 wt.% or 2.2:17.8 wt.%, respectively.  相似文献   

11.
Hot-dip aluminizing and interdiffusion treatment were used to develop a TiAl3-rich coating on Ti–6Al–4V alloy. Interrupted oxidation at temperatures from 600 to 900 °C and isothermal oxidation at 700 and 800 °C of the coating were conducted. The coating markedly decreases the oxidation rate in comparison with the alloy at temperatures below 800 °C during the interrupted oxidation. The oxidation kinetics follows parabolic relations at 700 and 800 °C during the isothermal oxidation. A layered structure of Al2O3/TiAl3/TiAl2/TiAl/alloy from the outside to the inside forms after oxidation at 700 °C without changing the main body of the coating.  相似文献   

12.
Al2O3–10TiC composite was synthesized by high energy ball milling followed by spark plasma sintering (SPS) process. Microstructure of the sintered composite samples reveals homogeneous distribution of the TiC particles in Al2O3 matrix. Effect of sintering temperature on the microstructure and mechanical properties was studied. The sample sintered at 1500 °C shows a measured density of 99.97% of their theoretical density and hardness of 1892 Hv with very high scratch resistance. These results demonstrate that powder metallurgy combined with spark plasma sintering is a suitable method for the production of Al2O3–10TiC composites.  相似文献   

13.
Synthesis and sintering of an alumina /titanium diboride nano-composite have been studied as an alternative for pure titanium diboride for ceramic armor applications. Addition of TiB2 particles to an Al2O3 matrix can improve its fracture toughness, hardness and flexural strength and offer advantages with respect to wear and fracture behavior. This contribution, for the first time, reports the sintering, microstructure, and properties of Al2O3–TiB2 nano-composite densified with no sintering aids. Nano-composite powder was produced by combination of sol–gel and mechano-chemical methods. The densification experiments were carried out using both hot pressing and pressureless sintering routes. In the pressureless sintering route, a maximum of 92.3% of the theoretical density was achieved after sintering at 1850 °C for 2 h under vacuum. However, hot pressing at 1500 °C for 2 h under the same condition led to achieving a 99% of the theoretical density. The hot pressed Al2O3–TiB2 nano-composites exhibit high Vickers hardness (16.1 GPa) and a modest indentation toughness (~ 4.2 MPa.m1/2).  相似文献   

14.
A SiO2–Al2O3–glass composite coating was prepared on Ti–6Al–4V alloy by air spraying and subsequent firing. The oxidation behavior of the specimens at 800 °C and 900 °C for 100 h was studied. The thermal shock resistance of the coating was tested by heating up to 900 °C and then quenching in water. The composite coating acted as an oxygen migration barrier and exhibited good resistance against high temperature oxidation, thermal shock, and oxygen permeation on the Ti–6Al–4V alloy. Coating/alloy interfacial reaction occurred, forming a Ti5Si3/Ti3Al bilayer structure. A thin Al2O3 rich layer formed beneath the composite coating during oxidation at 900 °C.  相似文献   

15.
《Intermetallics》2007,15(5-6):635-638
The oxidation of Cu–6.8Al (at.%) alloy has been studied at 800 and 900 °C in 1 × 105 Pa pure O2. The scales formed at 800 °C are composed of a thin outer CuO layer and an inner protective Al2O3 layer. On the contrary, at 900 °C different samples of the alloy present two kinds of different oxidation behavior: one is protective, very similar to that at 800 °C, while the other is intermediate between protective and non-protective, with formation of very thick scale on the partial surface, which is mainly composed of copper oxides. The different behavior presented on a single sample is probably caused by local inhomogeneities of the alloy. It is deduced that at 900 °C the critical Al content to form external-alumina scale on Cu–Al alloy is about 6.8 at.%.  相似文献   

16.
Isothermal oxidation of Al65Cr27Fe8 and Al80Cr15Fe5 was studied in the 600–1080 °C range. Formation of transient alumina layers is obtained up to 900 °C. On Al65Cr27Fe8 transient to α-phase transformations occur when performing oxidation at 1000 °C, together with the possible appearance of (Al0.9Cr0.1)2O3. At 1080 °C, direct formation of α-alumina is obtained. On Al80Cr15Fe5, spallation of the oxide layer during the cooling stage is observed following oxidation at 800 and 900 °C, revealing thermal etching of the underneath alloy surface. At 1050 °C the α-Al2O3 scale is directly formed but plastic deformation and recrystallization of the underneath alloy into several intermetallic phases is observed.  相似文献   

17.
This paper reports the friction and wear response of WC–10%Co(Cr/V) cemented carbide with different surface finishes, attained by grinding (G) and wire-EDM, respectively, during sliding experiments at 400 °C. For comparison, tests under the same conditions were carried out at 25 °C. The wear experiments were performed under a normal force of 14 N, which produced a Hertzian maximum pressure of 3.10 GPa, and a sliding speed of 0.3 m/s against WC–6%Co(Cr/V) balls of 6 mm diameter. At 25 °C the average values of the friction coefficients were 0.36 ± 0.04 and 0.39 ± 0.06 for the ground and wire-EDM surface finishes, respectively. The mechanical behavior of both systems at 25 °C was assessed by carrying out analytical calculations of the stress field created by a circular sliding contact under a spherical indenter, where the residual stresses were considered. The theoretical results are in agreement with the experimental data, indicating that the wire-EDM sample has a specific wear rate, which is approximately 3.1 times greater than that corresponding to the G sample at 25 °C. At 400 °C, an increase in the friction coefficients takes place up to values of 0.75 ± 0.1 and 0.71 ± 0.8, for the ground and wire-EDM surface finishes, respectively. The increase was associated to an adhesive mechanism, which is more pronounced for the G sample. However, for the wire-EDM sample this increase was more linked to a marked abrasive mechanism. The wear rates for both samples at 400 °C are similar to those obtained at 25 °C, which indicates that apparently the test temperature does not have an important effect on the wear rate. However, it is known that temperature influences considerably the residual stress nature. Therefore, these results were explained by taking into account the wear mechanisms between the tribopairs in view of the mechanical characteristics and the morphological features obtained from SEM coupled with EDS analysis.  相似文献   

18.
《Acta Materialia》2007,55(18):6182-6191
High-temperature oxidation and hot corrosion behaviors of Cr2AlC were investigated at 800–1300 °C in air. Thermogravimetric–differential scanning calorimetric test revealed that the starting oxidation temperature for Cr2AlC is about 800 °C, which is 400 °C higher than other ternary transition metal aluminum carbides. Thermogravimetric analyses demonstrated that Cr2AlC displayed excellent high-temperature oxidation resistance with parabolic rate constants of 1.08 × 10−12 and 2.96 × 10−9 kg2 m−4 s−1 at 800 and 1300 °C, respectively. Moreover, Cr2AlC exhibited exceptionally good hot corrosion resistance against molten Na2SO4 salt. The mechanism of the excellent high-temperature corrosion resistance for Cr2AlC can be attributed to the formation of a protective Al2O3-rich scale during both the high-temperature oxidation and hot corrosion processes.  相似文献   

19.
Advanced SiC-based ceramics and fiber reinforced composites are interesting materials for a wide variety of applications involving sliding wear conditions because of their excellent thermomechanical properties. The microstructure and wear resistance of sintered SiC fiber bonded ceramics (SA Tyrannohex) were studied. The material is composed of SiC-fibers in two orientations, with polygonal cross sections and cores having higher carbon content than their surroundings, as observed with SEM. A thin layer of C exists between the fibers. This layer has been found to be a turbostratic-layered structure oriented parallel to the fiber surface. XRD shows that the material is highly crystalline and composed mostly of β-SiC. Unlubricated wear behavior of the SA-Tyrannohex material when sliding against a Si3N4 ball in air at room temperature was evaluated. Experiments were performed using a pin on disk apparatus, under different normal loads of 2, 5 and 10 N at sliding speeds of 25, 50, 100 mm/s. A decrease of the friction coefficient with load was found due to the presence of the turbostratic carbon layer between the fibers. Wear rates of the order of 100 mm3/MJ were obtained, independently of sliding speed. Microfracture of the fibers is the main wear mechanism.  相似文献   

20.
The sintering behavior of Al2O3-NbC nanocomposites fabricated via conventional and spark plasma sintering (SPS) was investigated. The nanometric powders of NbC were prepared by reactive high-energy milling, deagglomerated, leached with acid, added to the Al2O3 matrix in the proportion of 5 vol% and dried under airflow. Then, the nanocomposite powders were densified at different temperatures, 1450–1600 °C. Effect of sintering temperature on the microstructure and mechanical properties such as hardness, toughness and bending strength were analyzed. The Al2O3-NbC nanocomposites obtained by SPS show full density and maximum hardness value > 25 GPa and bending strength of 532 MPa at 1500 °C. Microstructure observations indicate that NbC nanoparticles are dispersed homogeneously within Al2O3 matrix and limit their grain growth. Scanning electron microscopy examination of the fracture surfaces of dense samples obtained at 1600 °C by SPS revealed partial melting of the particle surfaces due to the discharge effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号