首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amkee Kim  Ilhyun Kim 《Wear》2009,267(11):1922-1926
The solid particle erosion behavior of epoxy base unidirectional and multidirectional carbon fiber reinforced plastic composites was investigated. The erosion rates of these composites were evaluated at various impingement angles (15–90°) with a particle velocity of 70 m/s. Irregular SiC particles with an average diameter of 80 μm was used. The dependence of impingement angle on the erosive wear resembled the conventional ductile behavior with maximum erosion rate at 15–30° impingement angle. The erosion rate of unidirectional composites at acute impingement angle was higher for [90] than for [45] and [0] while the difference disappeared at normal impingement angle (90°). On the other hand, the erosion rates of multidirectional laminated composites ([0/90], [45/−45], [90/30/−30] and [0/60/−60]) were not much influenced by the fiber orientation except for 15° impingement angle.  相似文献   

2.
《Wear》1986,107(1):1-12
The erosive wear behavior of selected polymer matrix composite materials was investigated using an erosion wear tester. Scanning electron microscopy was used to characterize the eroded surface. The results show that the erosive wear rates in these materials are at least an order of magnitude greater than that of low carbon steel. Of the composites tested, continuous graphite fiber-epoxy composites showed erosive wear that is typical of brittle materials (maximum wear rate when the impingement is normal to the surface), while continuous aramid fiber-epoxy and chopped graphite fiber-polyphenylene sulfide showed quasi-ductile behavior (maximum wear rate at 25°–45° impingement angle). These results are discussed in terms of the observed failure modes.  相似文献   

3.
采用UMT-5型摩擦磨损试验机和万能材料试验机考察TiO2和SiO2两种纳米颗粒对碳纤维(CF)/超高分子量聚乙烯(UHMWPE)复合材料摩擦学性能和力学性能的影响,利用扫描电镜观察复合材料断面形貌和磨痕表面形貌.结果表明:纳米TiO2和SiO2的加入可以改善碳纤维与树脂之间的界面结合强度,从而改善了 CF/UHMWP...  相似文献   

4.
《Wear》2006,260(7-8):895-902
Observations made pertaining to the erosive wear characteristics of a cast zinc-based alloy and its composite containing 10 wt.% (corresponding to 11.2 vol.%) alumina particles have been presented in this study. Matrix alloy has also been tested under identical test conditions in order to examine the role played by second phase alumina particles on the erosive wear resistance of the matrix alloy. Eroded surfaces and subsurface regions of the specimens were also characterized to understand the operating wear mechanisms.The composite exhibited higher erosive wear resistance (inverse of erosive wear rate) than the unreinforced matrix alloy in general. Further, the wear rate increased with increasing impingement velocity as also evident from higher surface damage. Increasing angle of impingement at lower impinging velocity led to reduced erosive wear rate. On the contrary, the erosive wear rate increased initially with impingement angle, attained the peak and then decreased at still higher angles at the higher impingement velocity. The eroded surfaces showed more abrasion grooves at lower impingement angle and greater tendency of crater formation at higher angles of attack. In case of the composite, protrusion and fracture of the dispersoid phase was also noted. The composite also revealed less severe surface and subsurface damage than the matrix alloy.  相似文献   

5.
30CrMo合金钢的冲蚀磨损性能研究   总被引:2,自引:0,他引:2  
采用自制的喷射型冲蚀磨损试验机,研究在水力压裂工况下,高速携砂液对高压管汇材料30CrMo的冲蚀磨损作用,分析冲蚀磨损机制以及冲蚀角度和冲蚀速度对30CrMo合金钢冲蚀性能的影响。结果表明,30CrMo合金钢在高速粒子冲击下,其耐冲蚀磨损性能表现一般,属于典型的金属塑性材料;冲蚀角度为30°时,30CrMo的冲蚀磨损量最大;30CrMo的磨损机制与冲蚀角度有直接的关系,冲蚀角度小于30°时,冲蚀磨损机制以切削模型为主,大于30°时以局部塑性变形模型为主;冲蚀磨损量随冲击速度增加而显著增加,在高速冲击时,30CrMo钢的冲蚀磨损较为严重。  相似文献   

6.
以注塑成型法制备了尼龙1010及碳纤维(CF)增强尼龙1010复合材料,研究了CF含量和载荷对材料摩擦学性能和磨损机制的影响。结果表明,CF的加入可显著改善尼龙的摩擦学性能,以体积分数为20%的CF增强尼龙1010复合材料的耐磨性能最好。较低的CF含量下复合材料磨损表面主要受到对偶钢环上微凸峰的切削和犁沟作用,较高载荷时发生了热疲劳剥层磨损;随着CF含量增加,复合材料表面在较高载荷时产生明显疲劳断裂,并使对偶钢环产生较剧烈磨损。  相似文献   

7.
用KH550硅烷偶联剂表面改性的硅灰石纤维(WF)填充PTFE,在MPX-2000型磨损试验机上研究复合材料的摩擦磨损性能,并与经典的炭纤维(CF)填充PTFE复合材料进行比较。采用SEM对磨损面和对偶面进行分析。结果表明:较高载荷(200和300 N)下复合材料摩擦因数随WF含量变化的幅度不大,较稳定地维持在较低值;细小尺寸WF填充PTFE复合材料的耐磨性能较好,在WF质量分数为10%时,复合材料的磨损量只有相同含量CF填充PT-FE复合材料的81%;细小尺寸WF填充PTFE复合材料的磨损面较为平整,存在轻微黏着磨损,其对偶面转移膜平整光滑、结构致密;而CF/PTFE复合材料磨损面存在许多裸露和碎断的CF,犁削和磨粒磨损是主要的磨损形式。  相似文献   

8.
A solid-particle erosive wear test by impinging silicon carbide (SiC) powders was carried out at room temperature over a range of median particle sizes of 425–600 μm, speed of 100 m/s and impact angle of 90° and assessed by wear measurements and scanning electron microscopy. Erosive wear behaviour was examined on newly fabricated nano-powder infiltration and transient eutectoid (NITE) SiC/SiC composites and two commercial composites by the chemical vapour infiltration (CVI) and NITE fabrication route. Microstructural observation was performed to examine the correlation between erosive wear behaviours and fabrication impurities. Conspicuous defects were observed in the prototype materials as the forms of porosity, fibre deformation, residual oxide, pyrolytic carbon (PyC) deformation, PyC cleavage, among others. Erosive wear behaviour was rather serious in the prototype of fabricated composites, which employ pre-SiC fibre and phenolic resin. Two dominant erosive wear mechanisms were observed: delamination of constituents, mainly caused by erosive crack propagation, and fragmentation and detachment of constituents, which usually resulted from erosive impact. A unit size of delamination was the most decisive factor affecting wear volume. The bonding strength of each constituent was mostly affected by various forms of porosities. Therefore, the fundamental cause and subsequent results must be carefully elucidated. The correlation of microstructural defect and wear behaviour was investigated with the aim of reducing dominant wear by improving fabrication conditions. The final product of the cost-effective composite had a 2.5-fold higher resistance than the commercial CVI composite. Consequently, by controlling fabrication impurities, we have been successful in developing and improving a new fabrication technique; consequently, the known defects are rarely observed in final product. A schematic wear model of erosive wear mechanisms is proposed for the newly fabricated SiC/SiC composites under particle erosion.  相似文献   

9.
《Wear》2007,262(5-6):568-574
Polyetherimide (PEI) composite reinforced with plain weave carbon fabric (CF) (40% by volume) was developed and characterized for physical and mechanical properties. The erosive wear behaviour of PEI and its composite was evaluated using silica sand particles at a constant impact velocity but varying angles of impingement. It was confirmed that though all the mechanical properties of PEI improved substantially by CF reinforcement, the erosion resistance (WR) deteriorated by a factor of almost four–six times at all angles of impingement. Both materials showed minimum wear at normal incidence (90° impingement). In spite of the fact that PEI is not a very ductile polymer (elongation to break-60%), it showed maximum wear at 15° which is a characteristic of ductile and semi-ductile mode of failure. The composite (elongation to break-1%) also showed highest wear at 30° (impingement at 15° was not studied). These phenomena were explained using scanning electron micrographs of the eroded surfaces.  相似文献   

10.
《Wear》2002,252(11-12):992-1000
The solid particle erosion behaviour of unidirectional carbon fibre (CF) reinforced polyetheretherketone (PEEK) composites has been characterised. The erosion rates of these composites have been evaluated at different impingement angles (15–90°) and at three different fibre orientations (0, 45, and 90°). The particles used for the erosion measurements were steel balls with diameter of 300–500 μm and impact velocities of 45 and 85 m/s. The unidirectional CF reinforced PEEK composites showed semi-ductile erosion behaviour, with maximum erosion rate at 60° impingement angle. The fibre orientations had a significant influence on erosion rate. The morphology of eroded surfaces was examined by using scanning electron microscopy (SEM). Possible erosion mechanisms are discussed.  相似文献   

11.
《Wear》2007,262(7-8):807-818
The present investigation reports about, the solid particle erosion behaviour of randomly oriented short E-glass, carbon fibre and solid lubricants (PTFE, graphite, MoS2) filled polyetherimide (PEI) composites. The erosion rates (ERs) of these composites have been evaluated at different impingement angles (15–90°) and impact velocities (30–88 m/s). Mechanical properties such as tensile strength (S), ultimate elongation to fracture (e), hardness (HV), Izod impact strength (I) and shear strength (Ss) seems to be controlling the erosion rate of PEI and its composites. Polyetherimide and its glass, carbon fibre reinforced composites showed semi-ductile erosion behaviour with peak erosion rate at 60° impingement angle. However, glass fibre reinforced PEI composite filled with solid lubricants showed peak erosion rate at 60° impingement angle for impact velocities of 30 and 88 m/s, whereas for intermediate velocities (52 and 60 m/s) peak erosion rate observed at 30° impingement angle. It is observed that 20% (w/w) glass fibre reinforcement helps in improving erosive wear resistance of neat PEI matrix. Erosion efficiency (η) values (0.23–8.2%) indicate micro-ploughing and micro-cutting dominant wear mechanisms. The morphology of eroded surfaces was examined by using scanning electron microscopy (SEM). Possible erosion mechanisms are discussed.  相似文献   

12.
This article reports our recent studies on WC-4.3 wt% MgO composites with a particular interest in the effect of grain-growth inhibitors (VC and Cr3C2) addition on its resistance to erosive wear. It is shown that the maximum erosion rate of the WC-MgO composite occurred at an impingement angle of 90°. With the addition of the grain-growth inhibitors (0.25 wt% VC and 0.25 wt% Cr3C2), the erosion resistance increased, particularly profound at the impingement angle of 90°, due to refined microstructures with improved mechanical properties. In addition, computational simulation based on a microscale dynamic model was conducted to investigate the effects of the grain boundary strength and grain size on the erosion resistance of the WC-MgO composites in order to better understand the microstructural effect on the erosive performance of the composites. It is demonstrated that the grain refinement with weak grain boundary strength has a negative effect on the erosion resistance.  相似文献   

13.
Solid particle erosion of polymer matrix composites is a complex process in which wear occurs from the target surface by impingement of rigid sand particles in an air medium. The rate of material removal (RMR), also referred to as the erosion rate, mainly depends on target material parameters and the erosion conditions such as impact angle, impact velocity, and erodent size. A new semi-empirical model for prediction of the erosion rate of polymer matrix composites has been developed using a dimensional analysis technique based on Buckingham's π theorem. The predictive model analytically rests upon parameters related to chopped glass fiber composites, erodent (target material properties), and operating variables that mainly affect the erosion process of chopped glass fiber–vinyl ester resin composites. The forecasting ability of the predictive model has been assessed and verified by experimental investigations for chopped glass fiber–reinforced vinyl ester resin (VGF) composites. Validation of the theoretical erosion rates obtained from the predictive model showed that they were in good agreement with the experimentally determined erosion rates, where the average error range was estimated to be ~10 to ~20%.  相似文献   

14.
This paper focused on high-speed milling of Al6063 matrix composites reinforced with high-volume fraction of small-sized SiC particulates and provided systematic experimental study about cutting forces, thin-walled part deformation, surface integrity, and tool wear during high-speed end milling of 65% volume fraction SiCp/Al6063 (Al6063/SiCp/65p) composites in polycrystalline diamond (PCD) tooling. The machined surface morphologies reveal that the cutting mechanism of SiC particulates plays an important role in defect formation mechanisms on the machined surface. In high-speed end milling of Al6063/SiCp/65p composites, the cutting forces are influenced most considerably by axial depth of cut, and thus the axial depth of cut plays a dominant role in the thin-walled parts deformation. Increased milling speed within a certain range contributes to reducing surface roughness. The surface and sub-surface machined using high-speed milling suffered from less damage compared to low-speed milling. The milling speed influence on surface residual stress is associated with milling-induced heat and deformation. Micro-chipping, abrasive wear, graphitization, grain breaking off, and built-up edge are the dominated wear mechanism of PCD tools. Finally, a series of comparative experiments were performed to study the influence of tool nose radius, average diamond grain size, and machining parameters on PCD tool life.  相似文献   

15.
Natural fibre-reinforced plastic (FRP) composites have gained much interest because of their environment friendliness and cost-effectiveness compared to synthetic fibre-reinforced composites. The availability of natural fibre and ease of manufacturing have tempted researchers worldwide to develop a locally available low-cost fibre and study their feasibility for reinforcement purposes and to what extent they can satisfy the required specifications of well-reinforced polymer composite for tribological application. FRP composites have various applications in the automobile, aerospace and marine fields. They are applied to inlet cone, fan exit guide vanes and other parts of structures in a turbofan engine for lightening an engine. The erosion characteristics of the FRP composites are of vital importance due to the operational requirements in dusty environments. In this present work, the impact of stacking sequence on erosion wear behaviour of untreated woven jute and glass fabric-reinforced epoxy hybrid composites has been investigated experimentally. The orientation of glass and jute fabric was kept at (0°–90°) and (45°–45°) for all stacking sequences. All the laminates were prepared using four plies, and, the number and position of glass layers were varied so as to obtain four different stacking sequences. The erosion rate of these composites were evaluated at different impingement angles (30°–90°) at three different impact velocities (V = 48, 70, 82 m/s). Silica sand was used as the erodent. Our results showed that the impingement angle had a significant influence on the erosion rate. The composite materials showed semi-ductile behaviour with the maximum erosion at an impingement angle of 60°. The morphologies of the eroded surface were observed by a scanning electron microscope, and the possible erosion mechanisms were discussed.  相似文献   

16.
A morphological study of the erosion of 6061-T6 aluminum alloy by the normal impact of a crushed glass erodent particle jet was conducted. Erosion patterns were studied at several stages by varying the average particle velocity and the exposure time. The surfaces were studied using a scanning electron microscope supplemented with energy-dispersive X-ray spectroscopy. A profilometer was used to measure surface profiles and a depth gauge was used to measure depths. Transformation from deformation to cutting wear induced by the erosion process was observed, and discussion of the dynamics of the erosion process is presented.The morphology of the damage pattern reflects the flow pattern of erodent particles inside the pit. From morphological comparisons of the pits with time over the average particle velocities from 41 to 87 m s?1 (driving gas pressures from 0.14 to 0.82 MPa), damage mechanisms were postulated and further insight into the erosion process was gained. Four distinct erosion regions were identified. Concentric ripple-type patterns appeared after the width-to-depth ratio of pits reached approximately 2.5. Cutting wear predominated at advanced stages in all erosion zones. Evidence for deformation wear appeared at the initial stage of erosion. The transformation to cutting wear appeared to occur simultaneously as the erosion rate transformed from the incubation period to the acceleration period. The correlation between erosion rate and jet velocity resulted in an exponent of 3.68, which agreed with some earlier normal impingement studies. Embedment of crushed glass was at a maximum at the bottom of the pit, and it decreased gradually from the pit edge to the undamaged region.  相似文献   

17.
ABSTRACT

A prediction model of cutting force for milling multidirectional laminate of carbon fiber reinforced polymer (CFRP) composites was developed in this article by using an analytical approach. In the predictive model, an equivalent uniform chip thickness was used in the case of orthogonal plane cutting, and the average specific cutting energy was taken as an empirical function of equivalent chip thickness and fiber orientation angle. The parameters in the model were determined by the experimental data. Then, the analytical model of cutting force prediction was validated by the experimental data of multidirectional CFRP laminates, which shows the good reliability of the model established. Furthermore, the cutting force component of flank contact force was correlated with the surface roughness of workpiece and the flank wear of tool in milling UD-CFRP composites. It was found that surface quality as well as flank wear has a co-incident varying trend with the flank contact force, as confirmed by the observations of the machined surfaces and tool wear at different fiber orientations. So, it can be known that low flank contact force be required to reduce surface damage and flank wear.  相似文献   

18.
Arjula Suresh  A.P. Harsha  M.K. Ghosh 《Wear》2009,267(9-10):1516-1524
In the present study, the solid particle erosion behaviour of neat PEEK matrix and unidirectional glass fibre (GF) and carbon fibre (CF) reinforced polyetheretherketone (PEEK) and polyetherketoneketone (PEKK) composites has been studied. The erosion experiments have been carried out by using silica sand particles (200 ± 50 μm) as an erodent. Steady state erosion rates of these composites have been evaluated at different impact angles and impact velocities. The neat PEEK exhibited peak erosion rate at 30° impingement angle whereas the composites exhibited a semi-ductile behaviour with peak erosion rate at 60° impact angle. The erosion rate of the glass fibre reinforced composites was higher than that of the carbon fibre reinforced composites. The results show that the fibre orientation has a significant influence on erosion rate only at lower impact angles. The erosion rate of the composites was higher when the particles impact perpendicular to the fibre direction than parallel to the fibres. The morphology of eroded surfaces was observed under scanning electron microscope and damage mechanisms were discussed.  相似文献   

19.
This article presents a study of the erosion resistance of coated and uncoated polymer matrix composites for tidal turbine conditions. It focuses on the development of comparative erosive wear mode and mechanism maps for such materials. In our earlier work, testing of glass-fiber-reinforced polymer composites for tribological applications in marine simulated conditions, several erosion-related issues were highlighted. The combined effects of the NaCl solution and sand dramatically enhanced the erosive wear of the uncoated specimens. In order to address those issues, an erosion-resistant polymeric coating was applied to the composite and tested in marine simulated conditions with an extended range of sand particle size. The test results of the uncoated and coated composite have been compared in this research by erosive wear mode and mechanism maps techniques. These maps reveal that the coating has enhanced the erosion resistance. These findings provide significant progress toward materials selection approaches to manufacture of tidal turbine blades.  相似文献   

20.
Modeling and studying the impact behaviors of angular particles is critical in understanding the mechanisms of erosive wear on solid surfaces. This article focuses on effective mesh-free model based on the smoothed particle hydrodynamics (SPH) method to simulate impacts of angular particles on metallic surfaces. The predicted results are compared with the available experimental data, and good agreement has been achieved. Our simulations under different incident conditions successfully reproduce the general impact behaviors of angular particles, including rotating behavior and rebound behavior, which enables detailed examinations of erosion mechanisms. We find that the rotating behaviors are mainly determined by initial orientation and impact angle, whereas impact velocity has little effect. For backward impact involving a prying-off action, there generally exsits a critical impact velocity below which the cutting process would never be finished, which may result in a rebound angle greater than 90°. Further, multiple and overlapping impacts are simulated to reveal the effect of a pre-created crater on the subsequent impact. The results demonstrate the ability of the present model to handle the extremely deformed surface by overlapping impacts. The proposed SPH model and the present study could be useful in the study of erosive wear on the surface of metal devices that carry granular substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号