首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulative roll bonding of two aluminium alloys, AA2219 and AA5086 was carried out up to 8 passes. During the course of ARB, the deformation inhomogeneity between the two alloy layers results in interfacial instability after the 4th pass, necking of the AA5086 layers after the 6th pass and fracture along the necked regions after the 7th and 8th pass. The EBSD analysis shows deformation bands along the interfaces after 8 passes of ARB. The ARB-processed materials predominantly show characteristic deformation texture components. The weak texture after the 2nd pass results from the combination of a weakly-textured starting AA2219 layer and a strongly-textured starting AA5086 layer. A strong deformation texture forms due to the high imposed strain after a higher number of ARB passes. Subgrain formation and related shear banding induces copper/S components in the case of the small elongated grains, while planar slip leads to the formation of brass component in the large elongated grains.  相似文献   

2.
Four important commercial aluminum alloys, namely 1050, 5083, 6082 and 7010AA are processed through a single pass via two equal channel angular pressing (ECAP) dies with different geometries (die angles of 90° and 120°). Electron back scattered diffraction (EBSD) is applied on the flow plane of the processed samples. Large scans with a step size of 7 μm for grain size distribution and texture measurements, as well as small scans with a step size of 0.1 μm for determination of cell size distribution, were performed. Hardness and simple compression are employed to evaluate the mechanical properties of the ECAP processed samples. Shear bands in the ECAP processed 7010AA was a major feature that led to failure in all samples subjected to further simple compression. The hardness as well as the stress–strain behavior was similar in the ECAP processed 6082 and 5083AA. The die geometry and the strain involved in the single pass influenced the overall texture intensity developed in the wrought alloys (1050 and 5083AA) and had minimal influence on the texture intensity of the heat treatable alloys (6082 and 7010AA). Low angle grain boundaries dominated the microstructure of all alloys for all testing conditions.  相似文献   

3.
This paper proposes a method to investigate the effects of temperature and strain rate on the forming limit curves (FLCs) by combining a modified Voce constitutive model (Lin-Voce model) with the numerical simulation of Marciniak test. The tensile tests are firstly carried out at different forming temperatures (20, 230 and 290 °C) and strain rates (2.5, 120 and 150 s−1) for AA5086 sheet. A modified Voce constitutive model (named Lin-Voce model) is proposed to describe the deformation behavior of AA5086 and its material parameters are identified by inverse analysis technique. Then, the proposed constitutive model is verified by comparing numerical and experimental results obtained by tensile tests and Marciniak test, respectively. Finally, the numerical simulation of Marciniak test is carried out at different temperatures (100, 200 and 300 °C) and strain rates (2.5, 120 and 150 s−1), and the effects of temperature and strain rate on the FLCs of AA5086 are investigated and discussed.  相似文献   

4.
Magnesium alloys possess highly limited room-temperature formabilities. This presents a technological barrier to the fabrication of minitubes for biodegradable vascular stents. The research was aimed at developing precision forming technology to fabricate ZM21 magnesium alloy minitubes with a refined microstructure. A multipass cold drawing process with a moving mandrel was successfully developed to convert seamless hollow billets through five passes of cold drawing and an interpass annealing treatment into minitubes with an outside diameter of 2.9 mm and a wall thickness of 0.217 mm, ready for laser cutting into vascular stents. It was found that a cumulative reduction in cross-section area as much as 32% could be applied to the material without causing fracture. However, a further reduction in cross-section area required annealing at 300 °C for 1 h to change a twinned microstructure into a recrystallized grain structure and to regain formability. The interpass annealing treatment after the fourth pass led to a reduction in drawing force by 22%, in comparison with the drawing force at the fourth pass of drawing. The variations in the outside diameter and wall thickness of the minitubes could be kept within 5 and 12 μm, respectively. Further research is directed toward improvements in dimensional precisions.  相似文献   

5.
In this investigation, a new kind of metal matrix composites with a matrix of pure aluminum and hybrid reinforcement of Al2O3 and SiC particles was fabricated for the first time by anodizing followed by eight cycles accumulative roll bonding (ARB). The resulting microstructures and the corresponding mechanical properties of composites within different stages of ARB process were studied. It was found that with increasing the ARB cycles, alumina layers were fractured, resulting in homogenous distribution of Al2O3 particles in the aluminum matrix. Also, the distribution of SiC particles was improved and the porosity between particles and the matrix was decreased. It was observed that the tensile strength of composites improved by increasing the ARB passes, i.e. the tensile strength of the Al/1.6 vol.% Al2O3/1 vol.% SiC composite was measured to be about 3.1 times higher than as-received material. In addition, tensile strength of composites decreased by increasing volume fraction of SiC particles to more than 1 vol.%. Scanning electron microscopy (SEM) observation of fractured surfaces showed that the failure mechanism of broken hybrid composite was shear ductile rupture.  相似文献   

6.
Friction stir welded AA5052-O and AA6061-T6 dissimilar joint has a more obvious impact on microstructure and texture evolution compared to single material welding due to differences in physical and chemical parameters between two aluminum alloys. Microstructure, texture evolution and grain structure of AA5052-O and AA6061-T6 dissimilar joint were investigated by means of OM,EBSD and TEM measurements. Experimental results showed that FS weld was generalized in four regions–nugget zone (NZ),thermomechanically affected zone (TMAZ),heat affected zone (HAZ) and base metals (BM), using standard nomenclatures. NZ exhibited the complex structure of the two materials with flowing shape and mainly composed of the advancing side material Subgrain boundaries in weld nugget zone gradually transformed into high angle grain boundaries by absorbing dislocation and accumulating misorientations. Grain refinement of weld nugget zone was achieved by dynamic recrystallization. In the friction stir welding process, the presence of the shear deformation in weld made {001} < 100 > C cube texture, {123} < 634 > S texture in BM gradually transformed into {111} < 1(−)12(−) > A11 shear texture. HABs distribution were most significant in nugget followed by RS and then by AS. In TMAZ and NZ, numerous precipitates and lots of dislocations were observed.  相似文献   

7.
The pure Cu rods with an initial grain size of 410 μm were treated by using equal channel angular pressing (ECAP). The deformed microstructure and mechanical properties of ECAPed Cu samples were investigated. Special attention was paid on the refinement of grain size and local micromechanics of ECAPed Cu samples. The original coarse grains were refined to 320 μm after 4 passes. The final grains were composed of dislocation cells with a size of 500 nm–3 μm after 5–8 passes. The yield strength reached a saturation value of 368 MPa after 5 passes. The maps of microhardness distribution illustrated the inhomogeneity of local mechanical properties. The dislocation subdivision was the main deformation mode to refine the grain size, while twin fragmentation was restrained by dislocation slips for the reason of large initial grain size. Furthermore, the strengthening of ECAPed Cu was discussed.  相似文献   

8.
High purity aluminium sheets (∼99.9%) are subjected to intense plastic straining by constrained groove pressing method successfully up to 5 passes thereby imparting an effective plastic strain of 5.8. Transmission electron microscopy studies of constrained groove pressed sheets divulged significant grain refinement and the average grain sizes obtained after five pass is estimated to be ∼0.9 μm. In addition to that, microstructural evolution of constrained groove pressed sheets is characterized by X-ray diffraction peak profile analysis employing Williamson–Hall method and the results obtained fairly concur with electron microscopy findings. The tensile behaviour evolution with increased straining indicates substantial improvement of yield strength by ∼5.3 times from 17 MPa to 90 MPa during first pass corroborated to grain refinement observed. Marginal increase in strengths is noticed during second pass followed by minor drop in strengths attributed to predominance of dislocation recovery is noticed in subsequent passes. Quantitative assessment of degree of deformation homogeneity using microhardness profiles reveal relatively better strain homogeneity at higher number of passes.  相似文献   

9.
The hot bands of direct chill cast (DC) and strip cast (SC) AA 5182 aluminum alloys were annealed at 454 °C for 3 h, and then cold rolled to different reductions. The ODFs of the cold rolled samples were determined by X-ray diffraction in order to compare the texture evolution of DC and SC AA 5182 aluminum alloys during rolling. The texture volume fractions were computed by a new method, in which the Euler space representing all possible crystallographic orientations in rolling was subdivided into the cube, r-cube, Goss, r-Goss, β fiber, and random orientation regions based on the slip pattern combined with the characteristics of microstructure and texture. Empirical formulae of the texture volume fractions and true strain were constructed to predict the texture of cold rolled DC and SC AA 5182 aluminum alloys. The results show that the processing method (DC vs. SC) strongly affects the texture after annealing at 454 °C and the texture evolution during the subsequent rolling.  相似文献   

10.
In this paper, an equal channel angular pressing method is employed to refine grains and enhance mechanical properties of a new β Ti–35Nb–3Zr–2Ta biomedical alloy. After the 4th pass, the ultrafine equiaxed grains of approximately 300 nm and 600 nm are obtained at pressing temperatures of 500 and 600 °C respectively. The SEM images of billets pressed at 500 °C reveal the evolution of shear bands and finally at the 4th pass intersectant networks of shear bands, involving initial band propagation and new band broadening, are formed with the purpose of accommodating large plastic strain. Furthermore, a unique herringbone microstructure of twinned martensitic variants is observed in TEM images. The results of microhardness measurements and uniaxial tensile tests show a significant improvement in microhardness and tensile strength from 534 MPa to 765 MPa, while keeping a good level of ductility (~ 16%) and low elastic modulus (~ 59 GPa). The maximum superelastic strain of 1.4% and maximum recovered strain of 2.7% are obtained in the billets pressed at 500 °C via the 4th pass, which exhibits an excellent superelastic behavior. Meanwhile, the effects of different accumulative deformations and pressing temperatures on superelasticity of the ECAP-processed alloys are investigated.  相似文献   

11.
An age-hardenable 2124 aluminum alloy was severely deformed by accumulative back extrusion (ABE) method up to three passes at 100 and 200 °C. The characteristics of the second phase particles were studied using scanning electron microscopy. The results indicated that the size of primary particles had been reduced after the first ABE pass where even much finer particles was obtained as the successive passes were applied. In addition, the secondary particles were fragmented into finer pieces after ABE at 100 °C, whereas a particle coarsening was realized as the deformation temperature rose to 200 °C. The latter was attributed to the Ostwald ripening mechanism. However, the volume fraction of secondary particles was significantly decreased after three ABE passes at 200 °C due to the occurrence of deformation induced dissolution. Additionally, the tensile properties of the processed materials were measured utilizing a miniaturized tensile testing method. The results were justified considering the evolution of the second phase particles.  相似文献   

12.
The relatively new welding process friction stir welding (FSW) was applied in this research work to join 6 mm thick dissimilar aluminum alloys AA5083-H111 and AA6351-T6. The effect of tool rotational speed and pin profile on the microstructure and tensile strength of the joints were studied. Dissimilar joints were made using three different tool rotational speeds of 600 rpm, 950 rpm and 1300 rpm and five different tool pin profiles of straight square (SS), straight hexagon (SH), straight octagon (SO), tapered square (TS), and tapered octagon (TO). Three different regions namely unmixed region, mechanically mixed region and mixed flow region were observed in the weld zone. The tool rotational speed and pin profile considerably influenced the microstructure and tensile strength of the joints. The joint which was fabricated using tool rotational speed of 950 rpm and straight square pin profile yielded highest tensile strength of 273 MPa. The two process parameters affected the joint strength due to variations in material flow behavior, loss of cold work in the HAZ of AA5083 side, dissolution and over aging of precipitates of AA6351 side and formation of macroscopic defects in the weld zone.  相似文献   

13.
The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. The microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component {001}< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another.  相似文献   

14.
Aluminum alloys and high density polyethylene are utilized in a wide variety of industrial applications. In the present work the feasibility of friction stir butt welding between AA5059 alloy and high density polyethylene sheets is examined. The bonding mechanism, joint strength, and microhardness are considered in this study. Various welding parameters and tool alignment were investigated until sound joints were achieved by positioning approximately 85% of the rotating tool in the aluminum material on the advancing side (1.4 mm offset) at constant spindle speed and traverse speed of 710 rpm and 63 mm/min, respectively. The results indicate that AA5059 aluminum and high density polyethylene sheets can be successfully joined with a combination of secondary bonding and mechanical interlocking of the materials, which provides a potential alternative to adhesive bonding or mechanical fastening.  相似文献   

15.
Superplastic behavior of fine and ultra fine-grained AA5083 Al alloy was examined using the shear punch test. To achieve fine- and ultra fine-grained microstructures, a relatively new severe plastic deformation (SPD) process, namely Double Equal Channel Lateral Extrusion (DECLE) was employed. The strain rate sensitivity indices (m) of samples were evaluated after 1, 2, 4, and 6 passes for shear strain rates in the range of 3 × 10 3 to 3 × 10 1 s 1 and temperatures in the range of 573 to 673 K. For microstructural observations, TEM images together with the corresponding SAED patterns were prepared and utilized. A considerable increase in the m-value was observed after the first pass of the operation for all testing temperatures. The best condition for achieving a good superplasticity for the alloy was found to be a single pass DECLE at 673 K in the strain rate range of 10 2 to 10 1 s 1. This process condition resulted in an m-value of 0.43, indicative of a high strain rate superplastic deformation behavior. Further passes of the SPD process did not show any sign of superplasticity until the last pass of the operation, during which the m-value slightly increased, compared with the previous pass.  相似文献   

16.
In this investigation, titanium nitride (TiN) reinforcements are synthesized in situ on the surface of Ti–6Al–4V substrates with gas tungsten arc welding (GTAW) process by different methods to add nitrogen, nitrogen gas or TiN powder, to titanium alloys. The results showed that if nitrogen gas was added to titanium alloys, the TiN phase would be formed. But if TiN powder was added to titanium alloys, TiN + TiNx dual phases would be presented. The results of the dry sliding wear test revealed that the wear performance of the Ti–6Al–4V alloy specimen coated with TiN or TiN + TiNx clad layers were much better than that of the pure Ti–6Al–4V alloy specimen. Furthermore, the evolution of the microstructure during cooling was elucidated and the relationship among the wear behavior of the clad layer, microstructures, and microhardness was determined.  相似文献   

17.
In the present work, the effect of SiC nanoparticles on the mechanical properties of steel-based nanocomposite produced by accumulative roll bonding (ARB) process was investigated. The microstructure of the fabricated nanocomposites after fourth ARB cycle was exhibited an excellent distribution of SiC nanoparticles in the interstitial free (IF) steel matrix without any porosity. The findings revealed that with increasing the number of ARB cycles, the tensile strength of the ARB-processed pure IF steel and also nanocomposites was improved, but their elongation was decreased at first step and then was increased at second step. The tensile strength of the ARB-processed pure IF steel and nanocomposites was 4.5 and 6 times higher than the same value was obtained for annealed IF steel, respectively. In addition, the ARB-processed pure IF steel and nanocomposite was exhibited a higher hardness than the annealed IF steel so that the hardness values of the pure IF steel and nanocomposite were 3.78 and 4.44 times higher than that of the annealed IF steel.  相似文献   

18.
In this research, microstructure and mechanical properties of 5052Al/Al2O3 surface composite fabricated by friction stir processing (FSP) and effect of different FSP pass on these properties were investigated. Two series of samples with and without powder were friction stir processed by one to four passes. Tensile test was used to evaluate mechanical properties of the composites and FSP zones. Also, microstructural observations were carried out using optical and scanning electron microscopes. Results showed that grain size of the stir zone decreased with increasing of FSP pass and the composite fabricated by four passes had submicron mean grain size. Also, increase in the FSP pass caused uniform distribution of Al2O3 particles in the matrix and fabrication of nano-composite after four passes with mean cluster size of 70 nm. Tensile test results indicated that tensile and yield strengths were higher and elongation was lower for composites fabricated by three and four passes in comparison to the friction stir processed materials produced without powder in the similar conditions and all FSP samples had higher elongation than base metal. In the best conditions, tensile strength and elongation of base material improved to 118% and 165% in composite fabricated by four passes respectively.  相似文献   

19.
Transient Liquid Phase (TLP) bonding of two dissimilar alloys Al7075 and Ti–6Al–4V has been done at 500 °C under 5 × 10−4 torr. Cu was electrodeposited on Al7075 and Ti–6Al–4V surfaces, 50 μm thick Sn–4Ag–3.5Bi film was used as interlayer and bonding process was carried out at several bonding times. The microstructure of the diffusion bonded joints was evaluated by Light Optical Microscopy (LOM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The eutectic and intermetallic compounds formation along Al7075 grain boundaries and Ti/Al interface such as θ(Al2Cu), TiAl and Ti3Al were responsible for joint formation at the aluminum and titanium interfaces. Microhardness and shear strength tests were used to investigate the mechanical properties of the bonds. Hardness of the joints increased with increasing bonding time which can be attributed to the intermetallics formation at the interface. The study showed that the highest bond strength was 36 MPa which was obtained for the samples joined for 60 min.  相似文献   

20.
The article explores an evolution of a microstructure in AISI 420 martensitic stainless steel during selective laser melting. Several upper layers had hardness of 750 HV and contained 21 ± 12 vol.% austenite phase. The final bulk microstructure consisted of thermally decomposed martensite with hardness of 500–550 HV and unusually high, 57 ± 8 vol.%, amount of austenite. Obtained results indicate that during manufacturing a partitioning and austenite reversion took place, owing to the thermal cycling of the inner regions during manufacturing. Numerical simulation was found plausible to analyze and explain thermally activated processes that occurred in situ. Results of numerical simulation of the thermal cycles in dependence on the processing parameters suggested a possibility to control the thermal processes by variation of the laser energy input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号