首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
考虑密封端面粗糙度、周向表面波度以及空化效应,建立液体圆孔端面密封分析数学模型,通过数值求解不同圆孔排布方式下液体端面密封的压力分布和泄漏率,分析表面波度几何参数(波高、波数)和密封工况参数(转速、密封压力、膜厚等)对开启力和泄漏率的影响。结果显示:周向表面波度明显改变密封端面压力分布;随着波高的增加,密封泄漏率逐渐增加,并且径向局部开孔端面密封的泄漏率小于径向全开孔端面密封的泄漏率,但当膜厚为2 μm时,密封端面局部开孔时的泄漏率反而较大;在低压工况下,波数对两种排布端面密封的泄漏率无明显影响,随着压力的增加,周向波数使得径向全开孔端面密封的泄漏率逐步减小;液体圆孔端面密封的泄漏明显受到转速、密封压力和膜厚的影响,密封压力增加密封泄漏也增大,而转速和膜厚增加密封泄漏则逐渐减小;在高速下,密封端面圆孔排布方式对密封泄漏影响较小。  相似文献   

2.
高参工况下密封环的弹性变形在一定程度上会影响密封性能。以波度端面机械密封为研究对象,考虑空化效应和弹性变形,对高速波度端面机械密封液体泄漏特性开展理论研究。采用有限差分方法数值求解密封的压力分布、开启力和泄漏量,重点分析密封端面波度几何参数以及密封工况参数对开启力和泄漏率的影响规律。结果表明:高速工况下波度密封端面空化加剧以及端面变形,使得密封端面承载力减小;当表面波度幅值较小时,考虑弹性变形时的密封开启力大于不考虑弹性变形时的密封开启力,而表面波度幅值大于0.2μm之后,两者呈现相反的结果;考虑弹性变形时的密封泄漏率则均大于不考虑弹性变形时的密封泄漏率;在弹性变形影响下,波度端面机械密封的密封性能主要受密封压力和密封间隙的影响;随着密封压力的增加,密封泄漏率增加;随着密封间隙的增加,考虑弹性变形前后的泄漏率差值逐渐减小。在文中计算条件下,弹性变形使得密封泄漏率增加可达50%以上。  相似文献   

3.
波度端面机械密封热流体动力润滑性能分析   总被引:1,自引:0,他引:1  
基于流体润滑理论,考虑润滑液膜空化现象和润滑液膜与密封环之间的热传导作用,建立波度端面机械密封三维流固热耦合模型,采用SUPG有限单元法求解广义雷诺方程、能量方程和热传导方程,计算端面液膜压力、开启力、泄漏率、摩擦因数等参数,对比分析密封热流体动力润滑(THD)和流体动力润滑(HD)密封特性。结果表明:随着转速、密封压力、波幅、波数的增加,开启力和泄漏率增加,摩擦因数减小;随着坝宽比、初始膜厚的增加,开启力和泄漏率减少,摩擦因数增加。热效应对密封性能影响显著,随着端面摩擦热升高,润滑液膜压力降低。  相似文献   

4.
建立端面周向波度密封密封端面间液膜流场的数值模型,采用计算流体力学软件FLUENT对密封间隙中的液膜进行三维数值模拟,得到液膜流场的压力分布,求得密封的泄漏量、开启力和刚度等密封特性参数,分析密封几何参数(如波幅、波数、密封环坝区的宽度与密封环宽度之比)对密封性能的影响.结果表明:随着液膜厚度的增加,开启力减小,泄漏量增大;密封几何参数对密封特性参数的影响存在一定的规律,如波幅越大、波数越多,密封环端面的流体动压效应越明显,而随密封环坝区的宽度与密封环宽度之比的增加,开启力、泄漏量和刚度都减小.  相似文献   

5.
润滑膜的空化效应对流体动压型机械密封的密封性能影响显著。以煤油基磁流体润滑斜线槽上游泵送机械密封为研究对象,考虑空化热效应以及黏温效应,建立润滑液膜特性的数值分析模型,以液膜中的气相体积分数为指标,研究工况和结构参数对密封性能的影响规律,并与仅考虑黏温效应的模型进行对比。结果表明:因空化热模型考虑液膜介质饱和蒸汽压力随温度变化,考虑空化热效应时的开启力、泄漏率和气相体积分数均小于仅考虑黏温效应下的对应值,但2种条件下各参数的变化趋势基本一致;转速和槽径比增大,空化效应增强,而进口压力、膜厚、径向夹角和槽数的增大会削弱空化效应;转速、槽深、径向夹角、槽径比增加,会导致泄漏率增加,而进口压力和槽数的增加能够提升密封性能。  相似文献   

6.
大圆形孔端面机械密封性能分析   总被引:3,自引:0,他引:3  
考虑液膜空化的影响,采用有限单元法求解层流、等温条件下控制流体密封端面膜压的雷诺方程,分析大圆形孔端面机械密封在不同端面几何结构参数和操作条件下,端面液膜压力分布以及开启力、液膜刚度和泄漏率等密封性能参数的变化规律,对比微孔与大孔密封端面的性能,指出大圆形孔端面密封产生承载力的机制;以最大液膜刚度及开启力为优化目标,在研究范围内获得大孔的最佳孔深。结果表明:在相同研究条件下,随着孔径和孔数的增加,大圆形孔产生的流体动压效应比微孔更强;随着介质压力的增加,静压效应增强,空化效应减弱,由此导致端面开启力增大,液膜刚度下降,泄漏率增大;随着转速的增大,开启力和液膜刚度均增大,而泄漏率减小。  相似文献   

7.
采用有限差分方法,基于对螺旋槽端面气膜压力分布、流速分布和泄漏率变化的数值计算分析,探讨低压上游泵送螺旋槽气体端面密封实现被密封介质零泄漏的作用机制和变化规律。结果表明,螺旋槽上游泵送作用可在高压侧形成周向封闭的高于密封压力的高压流体环带,阻止被密封介质进入密封间隙,实现被密封高压介质的零泄漏,形成密封介质的完全的反向泄漏;泄漏率随转速、槽数和膜厚的增加先减小后增大,随槽深、螺旋角和槽台宽比的增加先增大后减小,随槽根半径增加而减小;当转速、膜厚和槽数达到一定值时,泄漏方向会发生改变;开启力随转速和槽数增加而增大,随着膜厚的增大而减小,随槽深、螺旋角、槽台宽比和槽根半径的增加呈先增大后减小的趋势。  相似文献   

8.
基于质量守恒控制方程,建立考虑周向波度和径向锥度的机械密封几何模型,采用有限差分法对控制方程进行离散,并通过高斯-赛德尔法进行迭代,得到端面间压力分布,并分析周向波度和径向锥度对泄漏量、开启力等密封性能参数的影响。结果表明:端面波数的变化对开启力、泄漏量及摩擦扭矩的影响较小;端面波幅值的增加使得端面的开启力、泄漏量和摩擦扭矩同时增大;锥度的增大导致开启力和泄漏量的增加,且锥度正向增加有利于改善液膜的承载能力。  相似文献   

9.
基于质量守恒控制方程,建立考虑周向波度和径向锥度的机械密封几何模型,采用有限差分法对控制方程进行离散,并通过高斯-赛德尔法进行迭代,得到端面间压力分布,并分析周向波度和径向锥度对泄漏量、开启力等密封性能参数的影响。结果表明:端面波数的变化对开启力、泄漏量及摩擦扭矩的影响较小;端面波幅值的增加使得端面的开启力、泄漏量和摩擦扭矩同时增大;锥度的增大导致开启力和泄漏量的增加,且锥度正向增加有利于改善液膜的承载能力。  相似文献   

10.
T槽干气密封低速运转特性的理论研究   总被引:2,自引:0,他引:2  
研究T槽干气密封低速运转特性。考虑滑移流的影响,利用有限差分方法求解修正的雷诺方程,探讨端面气膜压力分布,分析滑移流效应对工作膜厚、端面开启力和泄漏率的影响,以及端面关键几何参数对端面开启力和气体泄漏率的影响规律。结果表明:气膜密封在低速运转时,由于工作膜厚较小,滑移流对密封性能影响较大;T槽的几何参数和操作参数对密封性能有影响,其中几何参数对密封性能均有较大影响。  相似文献   

11.
为研究密封端面形貌变化和润滑流体的剪切稀化特性对螺旋槽液膜密封稳态特性的影响基于幂律模型,建立考虑润滑流体的剪切稀化特性、密封端面径向锥度和周向波度的螺旋槽液膜密封稳态特性数学模型,利用有限差分法求解稳态雷诺方程,分析径向锥度和周向波度对剪切稀化流体液膜密封稳态特性的影响规律。结果表明:当锥度增大时,液膜密封开启力减小、泄漏量增大、摩擦扭矩减小,润滑流体的剪切稀化特性可以明显地减小密封端面开启力和泄漏量,稍微增大摩擦扭矩;当波数增大时,液膜密封开启力增大、泄漏量小幅减小、摩擦扭矩增大;当波幅增大时,液膜密封开启力增大、泄漏量小幅增大、摩擦扭矩明显减小;波度对剪切稀化流体液膜密封稳态特性的影响程度要稍弱于对牛顿流体的影响,但整体趋势保持一致。  相似文献   

12.
在密封副的表面上引入大尺度的凹槽与小尺度微孔结合的跨尺度复合织构,提出椭圆形微孔与T形槽结合的复合织构化机械密封端面,并创建间隙液膜流体模型;根据质量守恒空化边界条件建立数学模型,采用有限单元法进行数值求解,研究不同长短轴比的椭圆微孔分别与T形槽复合对密封性能的影响,确定最佳复合构型;对比分析不同工况参数下,不同织构化端面密封的开启力、泄漏量等密封性能的变化规律。结果表明:最佳复合构型为长短轴比1.8的椭圆微孔与T形槽复合,在相同工况参数下,相较单一织构,跨尺度复合织构化端面密封具有更强的动压润滑效应、更低的泄漏量、更高的开启力,综合密封性能最好。研究结果可应用于机械密封织构化摩擦副端面的设计及优化。  相似文献   

13.
为解决波度端面机械密封精密加工困难的问题,基于收敛型槽具有较低的泄漏量和较高的流体静压效应的特点,提出一种由波度端面机械密封结构衍生变化的阶梯收敛槽机械密封结构,考虑空化作用,对不同结构参数及工况参数下机械密封密封性能进行CFD流体仿真分析。结果表明:工况参数及结构参数对液膜空化效应有显著的影响,其中随着膜厚、密封压力以及槽深的增加,液膜空化效应均减弱,随着转速的增大,液膜空化效应变强。以开漏比评价密封性能,结果表明,阶梯收敛槽机械密封在小膜厚、高转速、较低密封压力以及较小静环开槽深度下运行时可获得最优密封性能;但为保证密封端面液膜具有足够的承载力,开槽深度不宜过小。  相似文献   

14.
《流体机械》2016,(12):46-49
以抛物线型流体静压型机械端面密封(PHS-MS)为研究对象,建立了PHS-MS流体润滑理论模型,考虑流体液膜粘温压效应,采用有限差分法对广义Reynolds方程、能量方程、热传导方程组成的耦合数学模型进行了数值计算,获得了介质温升对PHS-MS密封性能影响规律。结果表明,介质温升使PHS-MS的端面开启力先增大后减小,泄漏率增大,而摩擦力减小,并随着时间推移各项密封性能参数趋向稳定;当介质温升较快时,开启力、泄漏率增大及摩擦力减小的趋势快,但密封性能参数达到的稳定值不变。  相似文献   

15.
The introduction of grooves, micropores, and other forms of surface geometric modifications onto the mating seal plates has been performed to enhance the gas face seal performance. Reducing fluid leakage through the seal surface has been the main motivation for the development of efficient sealing technology for industrial turbomachinery. Pressure dams are generally etched on the seal inner and outer radii to improve even more the seal capability of reducing the gas leakage to atmosphere. This paper presents a finite element analysis carried out to determine the opening force, the flow leakage and the dynamic force coefficients of flat gas face seals with pressure dams operating under stringent conditions. Several curves of steady-state and dynamic seal performance characteristics depict the influence of the pressure dam position and width on the seal performance and efficiency.  相似文献   

16.
为探讨不同形状微孔搭配排布对机械密封性能的影响,基于Reynolds方程和JFO空化边界条件,采用有限体积法建立密封间隙流体的数值计算模型;选用圆形孔、椭圆形孔和等腰三角形孔任意搭配,得到27个模型,并计算不同压差、转速下各模型的开启力和泄漏率;对数据做归一化处理后绘制密封性能参数分布图。结果表明:模型中圆形孔数目越少,越靠近外径边界,模型的泄漏率越低,开启力越大;当压差为0时,密封性能参数呈现为区域性集中分布,此现象受动压效应和静压二者共同影响,压差越小,转速越大,越易产生。  相似文献   

17.
提出一种斜线槽上游泵送机械密封,运用正交试验法设计上游泵送机械密封试验方案,基于Fluent软件进行数值模拟试验,分析各个试验参数对密封端面开启力和泄漏量的影响。结果表明:在试验参数的取值范围内,对开启力有显著影响的因素是槽数、径向夹角、槽深、液膜厚度、转速和压差,具体表现为开启力随着径向夹角、槽深、液膜厚度、转速和进出口压差的增大呈上升趋势,随着槽数的增多呈下降趋势;对泄漏量有显著影响的因素是槽深、槽宽比、液膜厚度、转速和压差,具体表现为泄漏量槽宽比、液膜厚度、转速和进出口压差的增大呈上升趋势,随着槽数的增多而呈下降趋势。依据正交试验分析结果,提出初步优化的密封端面结构参数。  相似文献   

18.
采用ABAQUS软件对牵引绳用调控式往复密封装置在高压环境下的密封性能进行有限元分析,获得密封组件与牵引绳的应力分布及变形情况,分析调控压力与介质压力对密封泄漏率及摩擦力的影响规律。设计搭建主密封试验装置并进行试验验证。结果表明:采用合理的调控压力与密封结构设计可以实现较好的接触应力分布,显著地减少密封泄漏;随着调控压力的增加,密封泄漏率先迅速下降,而后缓慢下降并逐渐趋于稳定,当调控压力大于介质压力的1.3倍时,泄漏率接近于0;增加调控压力导致摩擦力呈现先缓后急的增长趋势;介质压力对密封环具有开启作用,能够降低流体膜压力而减小摩擦力;工程应用中,维持调控压力比介质压力高出0.2~0.5 MPa时密封效果最好。  相似文献   

19.
针对压力自适应型机械密封在高压工况下密封端面变形与密封性能不佳的问题,采用ANSYS中的计算流体力学软件FLUENT和有限元分析软件Mechanical APDL,在15.9 MPa高压工况下分别对密封端面间隙中的液膜流场和密封环进行了数值模拟分析研究,并将计算出的液膜流场状态和密封环变形结果进行了流固耦合求解,进而对液膜厚度对密封性能的影响规律进行了分析,同时对在实际工作状态下,工作压力逐渐上升,密封各性能参数的变化规律也进行了分析。研究结果表明,该密封在高压下的端面变形符合设计需要,密封环端面间的开启工作压力在3 MPa左右,在15.9 MPa高压工况下密封端面间流场的开启力为67.6 kN、泄漏量为0.04 m3/h,平衡膜厚为2.8μm。与其他类型的密封相比,结果显示该种密封能够在高压下提供足够的开启力和在低压下较小的泄漏量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号