首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermosensitive core–shell nanoparticles were synthesized by semicontinuous heterophase polymerization of styrene, followed by a seeded polymerization for forming a shell of poly(N-isopropyl acrylamide) (PNIPAM). Nanoparticles characterization by scanning transmission electronic microscopy showed core–shell morphology with average particle diameters around 40 nm. An inverse dependence of the particle size with temperature in the range 20–55 °C was identified by quasielastic light scattering measurements. As was expected for core–shell particles with PNIPAM as the shell, a volume phase transition near 32 °C was detected. In spite of thermosensitive properties of core–shell nanoparticles synthesized here, the volume percentage loss values were not so high, probably due to their relatively low content of PNIPAM.  相似文献   

2.
Data are presented on the effect of the loading of Ni/Sb-SnO2 on the physical, structural and electrochemical characteristics of this highly active ozone electrocatalyst with the aim of understanding its catalytic activity. The data strongly suggest that, despite the ‘cracked earth’ morphology of the catalysts, the walls of the fissures do not contribute to the observed electroactivity, both in terms of ferrocyanide oxidation or O3 and O2 evolution. In addition, the data indicate that there is a surface enrichment of Ni, and hence active sites, with increasing loading.  相似文献   

3.
The TaB2–27.9 vol% SiC composite was synthesized by self-propagating high-temperature synthesis starting from mechanically activated Ta, B4C and Si reactants. The obtained powders were spark plasma sintered at 1800 °C and 20 MPa for 30 min total time, thus obtaining a 96% dense product. The latter one was characterized in terms of microstructure, hardness, fracture toughness, and oxidation resistance. The obtained results, particularly the fracture toughness, are promising when compared to those related to analogous materials reported in the literature and fabricated with similar and different processing routes.  相似文献   

4.
5.
The development of microporous ceramic thin layers is of prime interest for sensors or gas separation membranes working at high temperature. Microporous silica membranes can be easily prepared by the sol–gel process. However the microporosity of pure silica is rapidly modified by steam at high temperature. One way to improve hydrothermal stability is to use mixed-oxide membranes. In this work, microporous silica–alumina membranes were prepared by a simple and robust sol–gel method. Tetraethoxysilane was mixed with an acidic alumina hydrosol. Urea was added for preparing the alumina hydrosol, for controlling the mixed-oxide network polycondensation and also as porogen agent. FTIR and 27Al NMR spectroscopic analyses showed that for Si/Al molar ratios up to 6/1, homogeneous mixed oxides were obtained with a random distribution of Al and Si atoms in the oxide lattice based on tetrahedral units. The derived supported layers were crack-free as demonstrated by scanning electron microscopy (SEM) observations. Their microporosity was investigated using ellipsoporosimetry (EP) with films supported on flat dense substrates. He, N2 and CO2 permeance measurements were performed for membranes deposited on porous tubular substrates. The measured values of He/N2 and He/CO2 ideal selectivities are in agreement with the microporous nature of the prepared layers.  相似文献   

6.
The influence of zinc oxide content on the formation of chlorapatite-based composite nanopowders in the mechanically alloyed CaO–CaCl2–P2O5–ZnO system was studied. To mechanosynthesize composite nanopowders, different amounts of hydrothermally synthesized zinc oxide nanoparticles (0–10 wt%) were mixed with ingredients and then were mechanically activated for 5 h. Results showed that in the absence of zinc oxide, high crystalline chlorapatite nanopowder was obtained after 5 h of milling. In the presence of 4 and 7 wt% zinc oxide, the main product of milling for 5 h was chlorapatite–zinc oxide composite nanopowder. On increasing the zinc oxide content to 10 wt%, composite nanopowder was not formed due to improper stoichiometric ratio of the reactants. The crystallite size, lattice strain, volume fraction of grain boundary, and crystallinity degree of the samples fluctuated significantly during the milling process. In the presence of 7 wt% zinc oxide, the crystallite size and crystallinity degree reached 51±2 nm and 79±2%, respectively. During annealing at 900 °C for 1 h, the crystallization of composite nanopowder occurred and as a result the crystallinity degree rose sharply to 96±3%. In addition, the crystallite size increased to 77±2 nm after annealing at 900 °C. According to SEM and TEM images, the composite nanopowder was composed of both ellipse-like and polygonal particles with a mean size of about 98 nm.  相似文献   

7.
In this paper, synthesis of novel super hard and high performance composites of titanium silicon carbide–cubic boron nitride (Ti3SiC2–cBN) was evaluated at three different conditions: (a) high pressure synthesis at ~ 4.5 GPa, (b) hot pressing at ~ 35 MPa, and (c) sintering under ambient pressure (0.1 MPa) in a tube furnace. From the analysis of experimental results, the authors report that the novel Ti3SiC2–cBN composites can be successfully fabricated at 1050 °C under a pressure of ~ 4.5 GPa from the mixture of Ti3SiC2 powders and cBN powders. The subsequent analysis of the microstructure and hardness studies indicates that these composites are promising candidates for super hard materials.  相似文献   

8.
《Ceramics International》2017,43(4):3623-3630
The Er3+-doped bismuth titanate (Bi4Ti3O12, BIT) nanoparticles were synthesized by a combined sol–gel and hydrothermal method under a partial oxygen pressure of 30 bar. The composition and morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman scattering. They showed pure and homogeneous spherical BIT nanoparticles with a size below the 30 nm. The incorporation of Er ions showed a strong decrease in the lattice parameters, as well as averaged particle size. The photoluminescence up-conversion (excitation wavelength =1480 nm) showed an enhancement of the infrared emission (980 nm) as Er concentration increased, achieving a maximum for 6% mol, while photoluminescence spectra (excitation wavelength =473 nm) showed a strong green emission (529 and 553 nm) with a maximum at 4% mol.  相似文献   

9.
《Ceramics International》2016,42(6):6728-6737
Synthesis of CeO2–Fe2O3 nanoparticles via propylene oxide (PO) aided sol–gel method for the production of solar fuels via thermochemical H2O/CO2 splitting cycles is reported in this paper. For the synthesis of CeO2–Fe2O3, cerium nitrate hexahydrate and iron nitrate nonahydrate were first dissolved in ethanol and then PO was added to this mixture as a proton scavenger to achieve the gel formation. Synthesized CeO2–Fe2O3 gel was aged, dried, and then calcined in air to achieve the desired phase composition. Influence of different synthesis parameters on physico-chemical properties of sol-gel derived CeO2–Fe2O3 was explored in detail by using various analytical methods such as powder x-ray diffraction (PXRD), BET surface area analyzer (BET), x-ray energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR–TEM). According to the findings, at all experimental conditions, phase/chemical composition of sol–gel derived CeO2–Fe2O3 was observed to be unaltered. The SSA and pore volume was increased with the upsurge in the amount of PO used during sol–gel synthesis and decreased with the rise in the calcination temperature and dwell time. In contrast, the crystallite size was enlarged with the increase in the calcination temperature and dwell time. The nanoparticle morphology of the sol–gel derived CeO2–Fe2O3 was verified with the help of SEM/TEM analysis. Thermochemical CO production ability of sol–gel derived CeO2–Fe2O3 was investigated by performing thermogravimetric thermal reduction and CO2 splitting experiments in the temperature range of 1000–1400 °C. Reported results indicate that the sol–gel derived CeO2–Fe2O3 produced higher amounts of O2 (69.134 μmol/g) and CO (124.013 μmol/g) as compared to previously investigated CeO2 and CeO2–Fe2O3 in multiple thermochemical cycles. It was also observed that the redox reactivity and thermal stability of sol–gel derived CeO2–Fe2O3 remained unchanged as it produced constant amounts of O2 and CO in eight successive thermochemical cycles.  相似文献   

10.
Different types of dense 5–97% ZrO2–MgAl2O4 composites have been prepared using a MgAl2O4 spinel obtained by calcining a stoichiometric mixture of aluminium tri-hydroxide and caustic MgO at 1300 °C for 1 h, and a commercial yttria partially stabilized zirconia (YPSZ) powder as starting raw materials by sintering at various temperatures ranging from 1500 to 1650 °C for 2 h. The characteristics of the MgAl2O4 spinel, the YPSZ powder and the various sintered products were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area, particle size analysis, Archimedes principle, and Vickers indentation method. Characterization results revealed that the YPSZ addition increases the sintering ability, fracture toughness and hardness of MgAl2O4 spinel, whereas, the MgAl2O4 spinel hampered the sintering ability of YPSZ when sintered at elevated temperatures. A 20-wt.% YPSZ was found to be sufficient to increase the hardness and fracture toughness of MgAl2O4 spinel from 406 to 1314 Hv and 2.5 to 3.45 MPa m1/2, respectively, when sintered at 1600 °C for 2 h.  相似文献   

11.
In this study novel material PbS–graphene/TiO2 composites were prepared by sol–gel method. The “as-prepared” composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS) and Raman spectroscopic analysis. The photocatalytic activities were investigated by the degradation of methylene blue (MB) as a standard dye. We observed that coupling of PbS with TiO2 extends the photoresponse to visible region. This revealed that the excellent photoinduced charge separation abilities and transport properties of graphene make these hybrids as potential candidates for developing high-performance next-generation devices.  相似文献   

12.
Ti/Pt/SnO2–Sb2O4 electrodes were prepared by alternating Sn and Sb electrodepositions, repeated 4 or 16 times, onto a platinized titanium foil by a thermo-electrochemical method. Chemical, electrochemical, and structural tests have been used for the characterization of Ti/Pt/SnO2–Sb2O4 electrodes. Anodic oxidation of the aqueous solution contaminated by amoxicillin, clofibric acid, diclofenac, and ibuprofen having a concentration of 100 mg L?1 and 0.035 M of Na2SO4 have been applied using Ti/Pt/SnO2–Sb2O4 electrodes at a current density of 10 and 30 mA cm?2. The chemical oxygen demand removals increased with current density and except for diclofenac, the Ti/Pt/SnO2–Sb2O4 electrode with 4 electrodeposition repetitions gave the best results. The combustion efficiencies for diclofenac and ibuprofen were higher than those obtained with similar electrode material, prepared without platinization, especially in the assay run with Ti/Pt/SnO2–Sb2O4 (16 electrodeposition repetitions).  相似文献   

13.
C60/TiO2 and V–C60/TiO2 composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol–gel method. Fullerene had absorptive and semiconducting properties, and vanadium could enhance the photogenerated electron transfer. The V–C60/TiO2 composite shows a good photo-degradation activity. XRD patterns of the composites showed that the C60/TiO2 composite contained a mixture of anatase and rutile phase forms while the V–C60/TiO2 composite contained a typical single and clear anatase phase. The surface properties seen by SEM and FE-SEM present a characterization of the texture on C60/TiO2 and V–C60/TiO2 composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of C and Ti with strong V peaks for the V–C60/TiO2 composite. From the photocatalytic results, the excellent activity of the C60/TiO2 and V–C60/TiO2 composites for degradation of methylene blue under UV irradiation could be attributed to both the effects between photocatalysis of the supported TiO2 and charge transfer of the fullerene, and the introduction of vanadium to enhance the photogenerated electrons transfer.  相似文献   

14.
A novel potassium humate–acrylic acid–acrylamide (KHA–AA–AM) superabsorbent polymer was prepared from the reaction among leonardite potassium humate, acrylic acid and acrylamide by free radical initiating process using ammonium persulfate as the initiator and N, N′-methylene bisacrylamide as the crosslinker. Various effects of synthesis conditions on superabsorbent polymer were studied and the optimal reaction condition was obtained with crosslinker concentration 0.44–0.74 wt%, initiator concentration 1.12–2.22 wt%, n(KOH)/n(AA) 0.51–0.70, monomer concentration 10.95–12.59 wt%, graft reaction temperature 83 ± 1°C, monomer mole ratio of acrylic acid to acrylamide 1.42–2.30, and potassium humate content 17.54 wt%. Under the optimal conditions, the solution absorbency of KHA–AA–AM superabsorbent polymer to deionized water, tap water, 0.5% carbamide solution and 0.9% NaCl solution were 733–756, 161–284, 786–825, and 76–83 g/g, respectively.  相似文献   

15.
Glass Physics and Chemistry - This paper describes the low-temperature polymer-salt synthesis of ZnO–Ag nanopowders and presents the results of studying their structure, morphology, and...  相似文献   

16.
A series of hyperbranched polyester–urethane–urea/K10-clay hybrid coatings (AHBPE-1 and AHBPE-2) have been prepared. Initially, the polyester polyols are synthesized separately in a step-wise manner using pentaerythritol (PE), phtallic anhydride (PTA) and trimethylol propane (TMP). The cetyltrimethylammonium bromide (CTAB) modified K10-clay is used as an organoclay for the hybrid composites preparation and dispersed into the polyester matrix by ultrasonication method. This clay-dispersed polyols are used for further synthesis. The degree of branching (DB), percentage of condensation reaction and quantity of dendritic (D), terminal (T) and linear (L) units present in the polyester are calculated, from the NMR peak integration value. The NMR result suggests that, there is formation of nearly 63% of condensation product in the polyester. A structure–property correlation is established, based on the hydrogen bonding effect with increasing clay content by using the FT-IR peak deconvulation technique. The dynamic mechanical and thermal analysis (DMTA) as well as thermo gravimetric analysis (TGA) results show, an increase in room temperature storage modulus (E′), glass transition temperature (Tg) and thermal stability of the hybrid coatings with increasing clay content and NCO/OH ratio. The contact angle measurement study suggests that, the hydrophilicity of the hybrid films increases with increasing clay content and decreases with increasing NCO/OH ratio.  相似文献   

17.
Magnesium (Mg) and carbon (C) compounds were synthesized by ball-milling a mixture of Mg and different graphites with different crystallinities. The materials were characterized by X-ray diffraction, X-ray absorption spectroscopy, and X-ray total scattering techniques. Hydrogen storage properties were also investigated. In the case of the material using low-crystalline graphite, a Mg and C compound was formed as main phase, and its chemical bonding state was similar to that of magnesium carbide (Mg2C3). The hydrogen absorption reaction of the Mg–C compound occurred at around 400 °C under 3 MPa of hydrogen pressure to form magnesium hydride (MgH2) and the C–H bonds in the carbon material. The hydrogenated Mg–C material desorbed about 3.7 mass% of hydrogen below 420 °C with two processes, which were the decomposition of MgH2 and the subsequent reaction of the generated Mg and the C–H bonds. From the results, it is concluded that the Mg–C compound absorb and desorb about 3.7 mass% of hydrogen below 420 °C.  相似文献   

18.
We describe the synthesis and binding properties of oligonucleotides that contain one or more 2'-fluoro-α-L-RNA thymine monomer(s). Incorporation of 2'-fluoro-α-L-RNA thymine into oligodeoxynucleotides decreased thermal binding stability slightly upon hybridization with complementary DNA and RNA with the smallest destabilization towards RNA. Thermodynamic data show that the duplex formation with 2'-fluoro-α-L-RNA nucleotides is enthalpically disfavored but entropically favored. 2'-Fluoro-α-L-RNA nucleotides exhibit very good base pairing specificity following Watson--Crick rules. The 2'-fluoro-α-L-RNA monomer was designed as a monocyclic mimic of the bicyclic α-L-LNA, and molecular modeling showed that this indeed is the case as the 2'-fluoro monomer adopts a C3'-endo/C2'-exo sugar pucker. Molecular modeling of modified duplexes show that the 2'-fluoro-α-L-RNA nucleotides partake in Watson--Crick base pairing and nucleobase stacking when incorporated in duplexes while the unnatural α-L-ribo configured geometry of the sugar is absorbed by changes in the sugar-phosphate backbone torsion angles. The duplex behavior of our new nucleotide follows that of α-L-LNA, by and large.  相似文献   

19.
Nanocomposites based on cadmium sulfide (CdS) and Na-montmorillonite (Na+-Mt) were prepared by a hydrothermal method using Cd[NH2CSNH2]SO4 complex as precursor of CdS which was derived from cadmium sulfate and thiourea. These nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR) and X-fluorescence (XF). The nanocomposites consist of nanosized CdS pillars, which tend to increase in size as the amount of complex precursor increases. The CdS crystals have a hexagonal symmetry. The photocatalytic activity of the obtained CdS–Mt nanocomposites is improved significantly compared to that of the Mt and pure CdS. The resulting CdS–Mt nanocomposites could degrade methylene blue and rhodamine 6G under near UV–visible irradiation.  相似文献   

20.
In this study, electrodeposition and thermal decomposition were alternatively used for the fabrication of a series of novel multilayer-structured SnO2-Sb-Ce/Ti (SSCT) electrodes, and their physiochemical and electrochemical properties were investigated for electrochemical oxidation of tetracycline (TC) in aqueous medium. Experimentally, after the SnO2-Sb-Ce (SSC) composite was electrodeposited for 120 s on the titanium substrate in aqueous solution, the outer thermal coatings composed of SSC were synthesized by a hydrothermal method. Both influences of electrodeposition time (Ted) and thermal decomposition time (Ttd) were investigated to obtain the optimum preparation. It was found that when increasing Ted to a certain extent a longer lifetime of electrode can be achieved, which was attributed to a more solid interlayer structure. A notable SSCTTed,Ttd electrode, i.e., SSCT3,10, which was prepared through three times of 120 s' electrodeposition (Ted=3) and ten times of thermal decomposition (Ttd=10) obtained the highest oxygen evolution potential 3.141 V vs. SCE. In this selected electrode, when 10 mg·L-1 initial TC concentration was added to this wastewater, the highest color removal efficiency and mineralization rate of TC were 72.4% and 41.6%, respectively, with an applied electricity density of 20 mA·cm-2 and treatment time of 1 h. These results presented here demonstrate that the combined application of electrodeposition and thermal decomposition is effective in realization of enhanced electrocatalytic oxidation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号