首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A new technique for measuring dynamic tensile behavior of metallic materials at elevated temperatures was developed. This technique employs a rapid contact heating method to obtain a stable and nearly homogenous high temperature field in the testing gage of the specimen. As an application of this new technique, a commercially pure titanium (CP-Ti) was tested in the strain rate range of 300 s−1–1400 s−1 and in a temperature range of 298 K–973 K. Quasi-static experiments (10−3 s−1, 10−2 s−1) were also performed in the same temperature range for comparison. The testing results indicated that both temperature and strain rate have pronounced influence on the mechanical behavior of CP-Ti.  相似文献   

2.
The hot deformation behavior of (0.2 um 1.5 vol.% + 10 um8.5 vol.%) bimodal size SiCp/AZ91 magnesium matrix composite fabricated by stir casting was investigated at the temperature of 270–420 °C and strain rate of 0.001–1 S−1. The flow stress at the strain of 0.5 was used for kinetic analysis. Results indicate that dislocation climb is likely to be the main deformation mechanism responsible for the present composite. By evaluating the efficiencies of power dissipation and instability parameters, the processing maps are developed to optimize the hot working processing. Two domains of dynamic recrystallization are found in the processing map. One exists at the temperature of 270–370 °C and strain rate of 0.001–0.01 s−1 with maximum dissipation efficiency of 38%; the other exists at 420 °C and 0.01 s−1 with peak dissipation efficiency of 24%. The instability region of flow behavior can also be recognized at the temperature of 270–320 °C and the strain rate of 0.1–1 s−1. The characteristic microstructures predicted from the processing map agree well with the result of microstructure observations.  相似文献   

3.
The high temperature flow behavior of as-extruded Ti–47.5Al–Cr–V alloy has been investigated at the temperature between 1100 °C and 1250 °C and the strain rate range from 0.001 s 1 to 1 s 1 by hot compression tests. The results showed that the flow stress of this alloy had a positive dependence on strain rate and a negative dependence on deformation temperature. The activation energy Q was calculated to be 409 kJ/mol and the constitutive model of this material was established. By combining the power dissipation map with instability map, the processing map was established to optimize the deformation parameters. The optimum deformation parameter was at 1150 °C–1200 °C and 0.001 s 1–0.03 s 1 for this alloy. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The material underwent instability deformation at the strain rate of 1 s 1, which was predicted by the instability map. The surface fracture was observed to be the identification of the instability.  相似文献   

4.
In order to evaluate the flow stress and the dynamic softening characteristics of casting 42CrMo steel, isothermal upsetting experiments with height reduction 60% were performed at the temperatures of 1123 K, 1198 K, 1273 K and 1348 K, and the strain rates of 0.01 s−1, 0.1 s−1, 1 s−1 and 10 s−1 on thermal physics simulator Gleeble 1500. The flow behavior of the applied stress as a function of strain, strain rate and temperature exhibits a more pronounced effect of temperature than strain rate, and a typical characteristic of dynamic recrystallization softening. To characterize the flow behavior more factually and accurately, the traditional Fields–Backofen equation was amended, and an innovative mathematical model containing a softening item s, n-value and m-value variable functions was brought forth. The stress–strain curves calculated by the derived flow stress equation are fit with the experimental results well not only at the hardening stage but also at softening stage.  相似文献   

5.
The deformation behavior of X-750 superalloy was investigated using the hot compression test in the temperature range of 850–1050 °C, and strain rate of 0.1–50 s−1. The experimental results show that the flow stress of superalloy is significantly sensitive to the strain, the strain rate and the deformation temperature. Using dynamic materials model the processing maps of X-750 superalloy at strain of 0.1, 0.3 and 0.5 were established respectively. Microstructure observations reveal that the grain size as well as the volume fraction of the recrystallized grains increased at higher deformation temperature or lower strain rate. At strain of 0.5, the flow instability domain mainly located at lower temperature which is associated with shear band formation and flow localization. The optimum parameters for hot working of the alloy are deformation temperature of 1000–1050 °C and strain rate of 0.1–1 s−1 according to the processing map and microstructure at true strain of 0.5.  相似文献   

6.
Isothermal compression tests of as-cast Ti–6A1–2Zr–2Sn–3Mo–1Cr–2Nb (TC21) titanium alloy are conducted in the deformation temperature ranging from 1000 to 1150 °C with an interval of 50 °C, strain rate ranging from 0.01 to 10.0 s−1 and height reductions of 30%, 45%, 60% and 75% on a computer controlled Gleeble 3500 simulator. The true stress–strain curves under different deformation conditions are obtained. Based on the experimental data, the effects of deformation parameters on the hot deformation behavior of as-cast TC21 alloy were studied. The deformation mechanisms of the alloy in the whole regimes are predicted by the power dissipation efficiency and instability parameter and further investigated through the microstructure observation. It is found that at the height reductions of 30%, 45% and 60%, the softening of stress–strain curves at high strain rate (>1.0 s−1) is mainly associated with flow localization, which is caused by local temperature rise, whereas at low strain rate, the softening is associated with dynamic recrystallization (DRX). However, the instability showed in flow localization occurs at low strain rate of 0.01 s−1 when the height reduction reaches 75%. In addition, the effects of strain rate, deformation temperature and height reduction on microstructure evolution are discussed in detail, respectively.  相似文献   

7.
Isothermal forging was a critical step process to fabricate the high-performance nickel-based superalloy. The temperature and strain rate served the most critical role in determining its microstructure and mechanical properties. In this article, we employed the hot compression to simulate the isothermal forging process upon the temperature ranging from 1000 °C to 1100 °C in combination with a strain rate of 0.001–1.0 s 1 for a new P/M nickel-based alloy. The activation energy was determined as 903.58 kJ/mol and the processing maps at a strain range of 0.4–0.7 were developed. The instability domains were more inclined to occur at strain rates higher than 0.1 s 1 and manifested in the form of adiabatic shear bands. The map further demonstrated that the regions with peak efficiency of 55% were located at 1080 °C/0.0015 s 1 and 1095 °C/0.014 s 1, respectively. Obvious dynamic recrystallization could be detected at the strain rate 0.01 s 1 leading to a significant flow stress drop and the grain growth was remarkably triggered under 1100 °C. The findings can shed light on the forging processing optimization of the new nickel-based superalloy.  相似文献   

8.
In this study, the constitutive equation and DRX(Dynamic recrystallization) model of Nuclear Pressure Vessel Material 20MnNiMo steel were established to study the work hardening and dynamic softening behavior based on the flow behavior, which was investigated by hot compression experiment at temperature of 950 °C, 1050 °C, 1150 °C and 1250 °C with strain rate of 0.01 s−1, 0.1 s−1 and 10 s−1 on a thermo-mechanical simulator THE RMECMASTOR-Z. The critical conditions for the occurence of dynamic recrystallization were determined based on the strain hardening rate curves of 20MnNiMo steel. Then the model of volume fraction of DRX was established to analyze the DRX behavior based on flow curves. At last, the strain rate sensitivity and activation volume V* of 20MnNiMo steel were calculated to discuss the mechanisms of work hardening and dynamic softening during the hot forming process. The results show that the volume fraction of DRX is lower with the higher value of Z (Zener–Hollomon parameter), which indicated that the DRX fraction curves can accurately predicte the DRX behavior of 20MnNiMo steel. The storage and annihilation of dislocation at off-equilibrium saturation situation is the main reason that the strain has significant effects on SRS(Strain rate sensitivity) at the low strain rate of 0.01 s−1 and 0.1 s−1. While, the effects of temperature on the SRS are caused by the uniformity of microstructure distribution. And the cross-slip caused by dislocation piled up which beyond the grain boundaries or obstacles is related to the low activation volume under the high Z deformation conditions. Otherwise, the coarsening of DRX grains is the main reason for the high activation volume at low Z under the same strain conditions.  相似文献   

9.
3004 Aluminum alloy has been subjected to tension test at a range of strain rates (5.56 × 10−5 to 5.56 × 10−3 s−1) and temperatures (233–573 K) to investigate the effect of temperature and strain rate on its mechanical properties. The serrated flow phenomenon is associated with dynamic strain aging (DSA) and yield a negative strain rate dependence of the flow stress. In the serrated yielding temperature region a critical transition temperature, Tt, was found. The critical plastic strain for the onset of serrations has a negative or positive temperature coefficient within the temperature region lower or higher than Tt. According to the activation energy, it is believed that the process at the temperature region lower than Tt is controlled by the interaction between Mg solute atom atmosphere and the moving dislocation. In the positive coefficient region, however, the aggregation of Mg atoms and precipitation of second phase decrease the effective amount of Mg atoms in solid solution and lead to the appearance of a positive temperature coefficient of the critical plastic strain for the onset of serrations.  相似文献   

10.
The critical strain energy release rate for the solder joint fracture was measured as a function of the strain rate and the mode ratio of loading. These data are useful in predicting the fracture of solder joints loaded under arbitrary combinations of tension and shear during the impact conditions typical of falling portable electronic devices. In this study, strain rates from quasi-static (close to 0 s 1) to 61 s 1 were investigated at phase angles from 0 to 60°, typical of the range found in microelectronic devices. Copper–solder–copper double cantilever beam (DCB) model specimens were prepared using SAC305 solder at cooling rates and times above liquidus typical of actual ball grid arrays (BGAs). A drop tester was designed and built to achieve different strain rates at various mode ratios. The critical initiation strain energy release rate, Jci, increased about 70% from quasi-static to intermediate strain rates, before decreasing by more than 67% from intermediate strain rates to 42 s 1.  相似文献   

11.
This paper reported a strain rate dependent plasticity in a Zr-based bulk metallic glass (BMG) under axial compression over a strain rate range (1.6 × 10−5–1.6 × 10−1 s−1). The fracture strain decreased with increasing strain rate up to 1.6 × 10−3 s−1. A “brittle-to-malleable” mutation occurred at strain rate of 1.6 × 10−2 s−1, subsequently, the macro plasticity vanished at 1.6 × 10−1 s−1. It is proposed that the result is strongly related to the combined action of the applied strain rate, the compression speed, and the propagating speed of the shear band. When the three factors coordinated in the optimal condition, multiple mature shear bands were initiated simultaneously to accommodate the applied strain, which propagated through the specimen and distributed homogeneously in space, dominating the overall plastic deformation by consuming the entire specimen effectively.  相似文献   

12.
The hot tensile deformation behaviors of 42CrMo steel are studied by uniaxial tensile tests with the temperature range of 850–1100 °C and strain rate range of 0.1–0.0001 s−1. The effects of hot forming process parameters (strain rate and deformation temperature) on the elongation to fracture, strain rate sensitivity and fracture characteristics are analyzed. The constitutive equation is established to predict the peak stress under elevated temperatures. It is found that the flow stress firstly increases to a peak value and then decreases, showing a dynamic flow softening. This is mainly attributed to the dynamic recrystallization and material damage during the hot tensile deformation. The deformation temperature corresponding to the maximum elongation to fracture increases with the increase of strain rate within the studied strain rate range. Under the strain rate range of 0.1–0.001 s−1, the localized necking causes the final fracture of specimens. While when the strain rate is 0.0001 s−1, the gage segment of specimens maintains the uniform macroscopic deformation. The damage degree induced by cavities becomes more and more serious with the increase of the deformation temperature. Additionally, the peak stresses predicted by the proposed model well agree with the measured results.  相似文献   

13.
The hot deformation behavior of the new Al–Mg–Si–Cu aluminum alloy was investigated by compression tests in the temperature range 350 °C–550 °C and strain rate range 0.005 s 1–5 s 1 using Gleeble-1500 system, and the associated structural changes were studied by observations of metallographic and TEM. The results show that the true stress–true strain curves exhibit a peak stress at a small strain (< 0.15), after which the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. The stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon parameter in an exponent-type equation with the hot deformation activation energy Q of 236 kJ/mol. The substructure in the deformed specimens consists of very small amount and fine precipitates with equaixed polygonized subgrains in the elongated grains and developed serrations in the grain boundaries, indicating that the dynamic flow softening is mainly as the result of dynamic recovery (DR) and recrystallization (RDX).  相似文献   

14.
The hot shear deformation behavior of an extruded Mg–12Li–1Zn alloy was studied by shear punch test (SPT) in the temperature range 200–300 °C, and in the shear strain rate range 1.2 × 10−3–6.0 × 10−2 s−1. Based on the constitutive analysis of the SPT data, it was found that a sine hyperbolic function could properly describe the hot shear deformation behavior of the material. The activation energy of 108 kJ mol−1 calculated from sine hyperbolic function together with the power-law stress exponents of 3.6–4.7 is indicative of lattice-diffusion-controlled dislocation climb mechanism as an operative deformation mechanism. As a new approach, the shear processing map was developed in order to determine the optimum processing condition, which was found to be 300 °C and 1.2 × 10−3 s−1. Domains of the processing map are also interpreted on the basis of the associated microstructural observations. It was found that the post-deformation microstructure is sensitive to the Zener–Hollomon parameter, so that DRX was encouraged with decreasing Z-value.  相似文献   

15.
The hot-working behavior of a Cu-bearing 317LN austenitic stainless steel (317LN–Cu) was investigated in the 950–1150 °C temperature and 0.01–10 s 1strain rate range, respectively. The effects of different deformation parameters and optimum hot-working window were respectively characterized through analyzing flow stress curves, constitutive equations, processing maps and microstructures. The critical strain for dynamic recrystallization (DRX) was determined by the inflection point on θ-σ and −∂θ/∂σ-σ curves. The peak stress was found to increase with decrease in temperature and increase in strain rate. Typical signs of DRX over a wide range of temperatures and strain rates were observed on the flow stress curves. The power dissipation maps in the strain range of 0.1–0.4 were basically similar, indicating the insignificant effect of strain on the power dissipation maps of 317LN–Cu. However, the instability maps showed strong strain sensitivity with increasing strain, which was attributed to the flow localization. The optimum hot-working window for 317LN–Cu was obtained in the temperature range 1100–1120 °C and strain rate range 0.01–0.018 s 1, with a peak efficiency of 38%. Microstructural analysis revealed fine and homogenized recrystallized grains in this domain.  相似文献   

16.
Mg–3Al–1Zn–2Ca (AZX312) alloy has been forged in the temperature range of 350–500 °C and at speeds in the range of 0.01–10 mm s−1 to produce a rib-web shape with a view to validate the processing map and study the microstructural development. The process was simulated through finite-element method to estimate the local and average strain rate ranges in the forging envelope. The processing map exhibited two domains in the following ranges: (1) 350–450 °C/0.0003–0.05 s−1 and (2) 450–500 °C/0.03–0.7 s−1 and these represent dynamic recrystallization (DRX) and intercrystalline cracking, respectively. The optimal workability condition according to the processing map is 425–450 °C/0.001–0.01 s−1. A wide flow instability regime occurred at higher strain rates diagonally across the map, which caused flow localization that should be avoided in forming this alloy. The experimental load–stroke curves correlated well with the simulated ones and the observed microstructural features in the forged components matched with the ones predicted by the processing map.  相似文献   

17.
Hot compression tests of a powder metallurgy (P/M) Ti–47Al–2Cr–0.2Mo (at. pct) alloy were carried out on a Gleeble-3500 simulator at the temperatures ranging from 1000 °C to 1150 °C with low strain rates ranging from 1 × 10−3 s−1 to 1 s−1. Electron back scattered diffraction (EBSD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to investigate the microstructure characteristic and nucleation mechanisms of dynamic recrystallization. The stress–strain curves show the typical characteristic of working hardening and flow softening. The working hardening is attributed to the dislocation movement. The flow softening is attributed to the dynamic recrystallization (DRX). The number of β phase decreases with increasing of deformation temperature and decreasing of strain rate. The ratio of dynamic recrystallization grain increases with the increasing of temperature and decreasing of strain rate. High temperature deformation mechanism of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy mainly refers to twinning, dislocations motion, bending and reorientation of lamellae.  相似文献   

18.
As the lightest metal material, magnesium alloy is widely used in the automobile and aviation industries. Due to the crashing of the automobile is a process of complicated and highly nonlinear deformation. The material deformation behavior has changed significantly compared with quasi-static, so the deformation characteristic of magnesium alloy material under the high strain rate has great significance in the automobile industry. In this paper, the tensile deformation behavior of AZ31B magnesium alloy is studied over a large range of the strain rates, from 700 s−1 to 3 × 103 s−1 and at different temperatures from 20 to 250 °C through a Split-Hopkinson Tensile Bar (SHTB) with heating equipment. Compared with the quasi-static tension, the tensile strength and fracture elongation under high strain rates is larger at room temperature, but when at the high strain rates, fracture elongation reduces with the increasing of the strain rate at room temperature, the adiabatic temperature rising can enhance the material plasticity. The morphology of fracture surfaces over wide range of strain rates and temperatures are observed by Scanning Electron Microscopy (SEM). The fracture appearance analysis indicates that the fracture pattern of AZ31B in the quasi-static tensile tests at room temperature is mainly quasi-cleavage pattern. However, the fracture morphology of AZ31B under high strain rates and high temperatures is mainly composed of the dimple pattern, which indicates ductile fracture pattern. The fracture mode is a transition from quasi-cleavage fracture to ductile fracture with the increasing of temperature, the reason for this phenomenon might be the softening effect under the high strain rates.  相似文献   

19.
The plastic deformation behaviors of Ti–6Al–4V alloy over wide ranges of strain rate (from 10−4 to 104 s−1) and temperature (from 20 to 900 °C) are investigated by the quasi-static and dynamic uniaxial compression tests. The microstructure evolution of Ti–6Al–4V alloy at different temperatures is discussed. Material generates higher ductility and formability when temperature is higher than 500 °C, which leads to the decrease of work hardening rate. The true stress–strain responses are modeled with the JC, modified JC, KHL and modified KHL models. In detail, a temperature dependent work hardening function is introduced into the original JC and KHL models. The parameters of the four models for Ti–6Al–4V alloy are calculated by GA optimization method. The average standard deviations between the experimental and calculated flow stresses range from 4% to 13%, which validates the accuracy of the models. In addition, comparison of flow stresses at dynamic (10,000 s−1), the work hardening rates at dynamic (7500 s−1), as well as the quasi-static jump experiments were proposed to further validate the models. The modified JC and modified KHL models could characterize the temperature dependent work hardening effect for Ti–6Al–4V alloy over large strain rate and temperature ranges.  相似文献   

20.
This paper describes the use of a material testing system (MTS) and a compressive split-Hopkinson bar to investigate the impact behaviour of sintered 316L stainless steel at strain rates ranging from 10 3 s 1 to 7.5 × 103 s 1. It is found that the flow stress–strain response of the sintered 316L stainless steel depends strongly on the applied strain rate. The rate of work hardening and the strain rate sensitivity change significantly as the strain rate increases. The flow behaviour of the sintered 316L stainless steel can be accurately predicted using a constitutive law based on Gurson's yield criterion and the flow rule of Khan, Huang and Liang (KHL). Microstructural observations reveal that the degree of localized grain deformation increases at higher strain rates. However, the pore density and the grain size vary as a reversible function of the strain rate. Impacts at strain rates higher than 5.6 × 103 s 1 are found to induce adiabatic shear bands in the specimens. These specimens subsequently fail as a result of crack propagation along the dominant band. The fracture surfaces of the failed specimens are characterized by dimple-like structures, which are indicative of ductile failure. The depth and the density of these dimples are found to decrease with increasing strain rate. This observation indicates a reduction in the fracture resistance and is consistent with the observed macroscopic flow stress–strain response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号