首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, friction stir processing (FSP) was used for the incorporation of Ni particles into the surface of an A413 alloy to fabricate a surface composite. FSP parameters were the rotation speed of 2000 rpm, the traverse speed of 8 mm/min and the tilt angle of 2°. Single pass and three-pass FSP were conducted on the samples. For the evaluation of microstructures, optical microscopy and scanning electron microscope were utilized. Also, for the investigation of intermetallic formation, energy dispersive spectroscopy was used. The wear resistance of different composites was investigated at ambient and elevated temperatures. Microstructural observations revealed that the FSP led to significant breakup of acicular Si particles, elimination of α­Al dendrites and heal the casting porosity. It was found that the hardness and wear behavior of A413 cast alloy were strongly influenced by applying FSP. Also, the in situ formation of Al3Ni particles during FSP was a critical factor controlling the wear mechanism. Sliding wear tests revealed that the increase in the number of passes created a homogeneous distribution of Al3Ni intermetallic particles and thereby resulting in a significant improvement in wear resistance at both room and high temperatures.  相似文献   

2.
In this research, microstructure and mechanical properties of 5052Al/Al2O3 surface composite fabricated by friction stir processing (FSP) and effect of different FSP pass on these properties were investigated. Two series of samples with and without powder were friction stir processed by one to four passes. Tensile test was used to evaluate mechanical properties of the composites and FSP zones. Also, microstructural observations were carried out using optical and scanning electron microscopes. Results showed that grain size of the stir zone decreased with increasing of FSP pass and the composite fabricated by four passes had submicron mean grain size. Also, increase in the FSP pass caused uniform distribution of Al2O3 particles in the matrix and fabrication of nano-composite after four passes with mean cluster size of 70 nm. Tensile test results indicated that tensile and yield strengths were higher and elongation was lower for composites fabricated by three and four passes in comparison to the friction stir processed materials produced without powder in the similar conditions and all FSP samples had higher elongation than base metal. In the best conditions, tensile strength and elongation of base material improved to 118% and 165% in composite fabricated by four passes respectively.  相似文献   

3.
Surface composites were fabricated on AA6063-T6 base metal using silicon carbide (SiC) reinforcement particles by friction stir processing (FSP). Influence of multiple FSP passes was investigated on the SiC particle distribution, processed zone dimensions, and microhardness of fabricated composites. The rotational speed, traverse speed, and tool tilt were kept constant and the numbers of passes were varied at 2, 4, 6, and 8. The particle distribution in processed zone was analyzed using OM and SEM, while microhardness were evaluated by Vickers indentation test. The results reveal that with increase in FSP passes there is increase in processed zone dimensions and elimination of defects such as agglomeration of particles and void. The microhardness of reinforced region was increased uniformly with increasing passes which is attributed to homogeneous distribution of reinforcement particles. The peak microhardness value of 81.9 Hv was obtained in sample which is processed with eight numbers of FSP passes. Processed zone indicates good bonding with the substrate and grain refinement.  相似文献   

4.
In this study, friction stir processing (FSP) was employed to modify cold-sprayed (CSed) AA2024/Al2O3 metal matrix composites (MMCs). Three different rotation speeds with a constant traverse speed were used for FSP. Microstructural analysis of the FSPed specimens reveals significant Al2O3 particle refinement and improved particle distribution over the as-sprayed deposits. After FSP, a microstructural and mechanical gradient MMC through the thickness direction was obtained. Therefore, a hybrid technique combining these two solid-state processes, i.e. CS and FSP, was proposed to produce functionally gradient deposits. The Guinier-Preston-Bagaryatskii zone was dissolved during FSP, while the amounts at different rotation speeds were approximately the same, which is possibly due to the excellent thermal conductivity of the used Cu substrate. Mechanical property tests confirm that FSP can effectively improve the tensile performance and Vickers hardness of CSed AA2024/Al2O3 MMCs. The properties can be further enhanced with a larger rotation speed with a maximum increase of 25.9% in ultimate tensile strength and 27.4% in elongation at 1500 rpm. Friction tests show that FSP decreases the wear resistance of CSed MMCs deposits due to the breakup of Al2O3 particles. The average values and fluctuations of friction coefficients at different rotation speeds vary significantly.  相似文献   

5.
Abstract

In the present article, the effect of friction stir processing (FSP) on the microstructural and mechanical characteristics of A390 hypereutectic Al–Si alloy was studied. The effect of tool rotational speed ω, traverse speed υ and the number of passes on such characteristics was investigated. The results showed that FSP significantly improved the microstructural characteristics of A390 Al alloy by reducing the structural defects found in the as cast alloy such as porosity and the size of α-Al primary grains as well as the size of the primary Si particles. The size of Si particulates was found to be reduced by reducing the tool rotational speed, increasing tool traverse speed and increasing the number of FSP passes.  相似文献   

6.
Superplastic forming has now become conventional for forming complex parts from sheet metals. In many superplastically formed aerospace components, only a selective region undergoes superplastic forming. In those cases, instead of selecting a material exhibiting superplastic properties, a light weight and low cost material can be chosen and its microstructure can be modified locally by the Friction Stir Processing (FSP) technique. In this work, AZ31B magnesium alloy is chosen, and friction stir processing is performed by varying the process parameters, such as tool axial force, tool traversing speed and tool rotational speed. The process parameter that produced equiaxed grains in the stirred zone with a grain size less than 10 μm is selected. With this parameter, single pass FSP, multiple pass FSP without overlapping and multiple pass FSP with overlapping are performed on the AZ31B magnesium alloy sheets and their superplastic behaviour was examined. Also the theoretical modelling was carried out to determine the strain rate sensitivity for the friction stir processed AZ31B magnesium alloy and for the nonprocessed AZ31B magnesium alloy. It is found that the strain rate sensitivity for the friction stir processed component has increased, when compared to the base metal.  相似文献   

7.
In this study, the effects of tool rotational speed and traverse speed on welding of AISI 430 (X6Cr17, material number 1.4016) ferritic stainless steels by friction stir welding method are examined. Two specimens with dimension of 3 × 100 × 200 mm were joined in butt position. Tool rotational speeds were determined to be 560–1400 min−1 and traverse speeds as 80–200 mm/min. During the studies, tool pressure force 3.5 kN and tool angle of 0° was kept constant. Hard metal carbide (WC-Co hard metal identified as K10) with equilateral triangle tip profile was used as the tool material. Determination of the tool advance speeds related to the tool rotation speeds giving the best-looking weld seals with acceptable values of mechanical properties was aimed.During welding of the specimens joined in butt position, the temperature change due to time and variation of the pressure force applied on welded specimens by the tool shoulder has been recorded. It has been observed that the best mechanical resistance values were obtained at tool rotational speed of 1120 min−1 through five tool rotational speeds (560–1400). Also it has been observed that the best mechanical resistance values were obtained at traverse speed of 125 mm/min through five traverse speeds (80–200) with the constant tool pressure force of 3.5 kN and tool angle of 0°.  相似文献   

8.
Microstructure, second-phase particles and mechanical properties of the joint along the thickness of plate during friction stir welded 2219 aluminum alloy thick plate using different shapes pin were investigated in this paper. The top presented larger equiaxed recrystallized grain structure and finer second-phase particles compared to the middle and bottom. Thermo-mechanically affected zone and boundary were more optically distinct on the advancing side in comparison with the retreating side. Grain size and particles were much finer and dispersed using the first tool with three spiral flute or at the lower rotational speed of 300 rpm. The strength and ductility in top slices was slightly higher than that in middle and bottom, increased with increasing traverse speed from 60 to 100 mm/min or the decrease of rotational speed from 500 to 300 rpm using the first tool. The mechanical properties using the second tool was lower than that of first tool, which was consistent with the hardness curves.  相似文献   

9.
Friction stir processing (FSP) has evolved as a novel solid state method to prepare surface composites. In this work, FSP technique has been successfully applied to prepare copper surface composites reinforced with variety of ceramic particles such as SiC, TiC, B4C, WC and Al2O3. Empirical relationships are developed to predict the effect of FSP parameters on the properties of copper surface composites such as the area of the surface composite, microhardness and wear rate. A central composite rotatable design consisting of four factors and five levels is used to minimize the number of experiments. The factors considered are tool rotational speed, traverse speed, groove width and type of ceramic particle. The effect of those factors on the properties of copper surface composites is analyzed using the developed empirical relationships and explained in this paper taking into account the microstructural characterization of the prepared copper surface composites. B4C reinforced composites have higher microhardness and lower wear rate.  相似文献   

10.
Friction stir processing (FSP) is a solid state technique used for material processing. Tool wear and the agglomeration of ceramic particles have been serious issues in FSP of metal matrix composites. In the present study, FSP has been employed to disperse the nanoscale particles of a polymer-derived silicon carbonitride (SiCN) ceramic phase into copper by an in-situ process. SiCN cross linked polymer particles were incorporated using multi-pass FSP into pure copper to form bulk particulate metal matrix composites. The polymer was then converted into ceramic through an in-situ pyrolysis process and dispersed by FSP. Multi-pass processing was carried out to remove porosity from the samples and also for the uniform dispersion of polymer derived ceramic particles. Microstructural observations were carried out using Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) of the composite. The results indicate a uniform distribution of ~ 100 nm size particles of the ceramic phase in the copper matrix after FSP. The nanocomposite exhibits a five fold increase in microhardness (260HV100) which is attributed to the nano scale dispersion of ceramic particles. A mechanism has been proposed for the fracturing of PDC particles during multi-pass FSP.  相似文献   

11.
In the present study, the joining of interstitial free steel and commercial pure aluminium was carried out by friction stir welding (FSW) technique using tool rotational speeds of 600, 900, 1200 rpm and traverse speed of 100 mm/min. The microstructure and micro-hardness of the weld interface have been investigated. Optical microscopy was used to characterize the microstructures of different regions of friction stir welding joints. The scanning electron microscopy-back scattered electron (SEM-BSE) images show the existence of the different reaction layers in the welded zone. The Al3Fe intermetallic compound has been observed in the weld interface and their thickness increase with the increase in tool rotational speed. Tensile strength was also evaluated and maximum tensile strength of ∼123.2 MPa along with ∼4.5% elongation at fracture of the joint have been obtained when processed at 600 rpm tool rotational speed.  相似文献   

12.
The current study aims to show for the first time the ability of friction stir processing (FSP) in incorporating yttria particles into copper to produce an oxide dispersion strengthened material. The microstructure of the as-developed composites was characterized at various scales by light microscopy, electron probe microanalysis (EPMA) and scanning and transmission electron microscopy. The powder was found to be distributed in the Cu matrix as confirmed at various length scales from the micrometric to the nanometric level. The increase of the number of FSP passes leads to a more homogeneous and finer distribution of the particles as it favored the dissociation of the clusters of initial powder particles and the intergranular fracture of individual elemental particles. Transmission electron microscopy observations reveal that the constitutive crystallites of the initial powder, typically 10 nm in size, are frequently dissociated and dispersed into the copper matrix. In spite of their very low volume fraction, these 10 nm sized fragments which present the highest density among the various size classes of particles, exert a strengthening and work hardening effect.  相似文献   

13.
Friction stir processing (FSP) has been used to produce metal matrix composites by incorporating reinforcement particles in an AA6061-T6 matrix. Two types of particles (Al2O3 and SiC) were tested. Powder was placed into a mechanized square section groove on a plate surface and then sealed before FSP. This study investigates the effect of several strategies for reinforcement (number and direction of FSP passes) on the wear resistance behavior of friction stir-processed Al-SiC/Al2O3 composites. The distribution and size of the particles in the friction stir-processed zone were studied by optical and scanning electron microscopy. Ball-on-disk test was performed on both base material and surface metal matrix composites (SMMCs), and both friction coefficient and specific wear rate (SWR) were correlated with particle distribution and metallurgical effects on the metallic matrix. For all strategies and for both types of reinforcing particles used in this study, the friction coefficient decreases with respect to the base material. Moreover, the SWR is reduced for the conditions of one single FSP pass and two passes with opposite directions, when SiC are used. However, this positive effect has not been detected with Al2O3. Wear mechanisms in base metal and in SMMCs are compared and discussed in detail.  相似文献   

14.
In this study, a new processing technique, friction stir processing (FSP) was attempted to incorporate nano-sized Al2O3 into 6082 aluminum alloy to form particulate composite surface layer. Samples were subjected to various numbers of FSP passes from one to four, with and without Al2O3 powder. Microstructural observations were carried out by employing optical and scanning electron microscopy (SEM) of the cross sections both parallel and perpendicular to the tool traverse direction. Mechanical properties include microhardness and wear resistance, were evaluated in detail. The results show that the increasing in number of FSP passes causes a more uniform in distribution of nano-sized alumina particles. The microhardness of the surface improves by three times as compared to that of the as-received Al alloy. A significant improvement in wear resistance in the nano-composite surfaced Al is observed as compared to the as-received Al.  相似文献   

15.
Aluminum–silicon carbide composite (Al–SiCp) is one of the most promising metal matrix composites for their enhanced mechanical properties and wear resistance. In the present study, Al–SiC (average size 55 μm) composites with 5% and 10% by volume were fabricated by stir casting technique. The equal-channel angular pressing (ECAP) was then applied on the cast composites at room temperature in order to study the effect of ECAP passes on the SiCp size and distribution. The ECAP process was successfully carried out up to 12(8) passes for Al–5%(10%)SiC samples. Microstructure study revealed that the highest refinement by breakage of SiCp was achieved after the first ECAP pass and that further refinement took place in the next passes. More breakage of the SiCp was found in the composite richer in reinforcing particles so that the SiCp reached approximately 1 μm in the Al–10%SiC after 8 passes and 4 μm in Al–5%SiC after 12 ECAP passes. The distribution of SiC reinforcement particles also improved after applying ECAP. The factors including decrease in reinforcing particle size, improvement in their distribution, decrease in porosity in addition to strain hardening and grain refining of the matrix resulted in enhancement of tensile and compressive strengths as well as hardness by more than threefold for the Al–5%SiC after 12 passes and for Al–10%SiC after 8 passes compared to the cast composites. Additionally, the composite remained ductile after the ECAP process. The fracture surface indicated good bond between the matrix and the reinforcement.  相似文献   

16.
An as-cast Al-Zn-Mg-Sc alloy was friction stir processed varying tool related parameters, yielding microstructures with different grain sizes (0.68, 1.8 and 5.5 μm). Significant increases in room temperature ductility were obtained in these materials with reasonable enhancement in strength. It is demonstrated that the type of microstructure produced by friction stir processing (FSP) has a significant influence on the choice of post-FSP heat treatment design for achieving improved tensile properties. It is also found that the ultrafine grained FSP material could not achieve the desired high strength during the post-FSP heat treatment without grain coarsening, whereas the micro-grained FSP materials could reach such strength levels (>560 MPa) under conventional age hardening heat treatment conditions.  相似文献   

17.
Functionally graded materials are one of the most promising candidates among advanced materials. However, some challenges still exist in its fabrication methods. The current study aims to produce functionally-graded bulk Al–SiC nanocomposites by a novel multistep friction stir processing (FSP) for the first time. The SiC nanoparticles were packed into a groove on the 6061 aluminum plate and FSP was performed by using a tool with pin length of 6 mm. Subsequently, FSP was reapplied on another groove by using a tool with a shorter pin length of 3.2 mm. The desirable distribution of SiC nanoparticles in the matrix was confirmed by scanning electron and atomic force microscopes. The composition of graded sample was changed continuously from 18 to 0 wt% SiC along the thickness. Accordingly, the microhardness profile showed a maximum of 160 Hv in the enriched zone which is 3.2 times higher than the hardness of the particle-depleted zone. However, a constant hardness value of 135 Hv was obtained along the thickness of homogenous sample which is 15% lower than that of superficial layer in graded sample. Moreover, the hardness values were linearly correlated with the inverse of interparticle spacing.  相似文献   

18.
Friction Stir Processing (FSP) has emerged as a distinctive and pioneering solid state technique to produce surface composites. The objective of the present research is to produce reinforced 90/10 Copper–Nickel surface composites with different carbide-based ceramic particles through FSP and study the relationship of its dynamic parameters including tool rotational speed, tool traverse speed, and width of the groove over the surface behavior. Responses such as sliding wear, microhardness, and surface modified area in the friction stir processed region are modeled using polynomial, nonlinear, multiple regression based on the central composite design of experiment. Analysis of the developed models showed that the FSP parameters; traverse speed, rotational speed, and groove width have significant influence on both the sliding wear and microhardness of developed surface composite. And furthermore, tool rotational speed and tool traverse speed, simultaneously control dispersion of reinforcement in the surface. To validate the abovementioned noteworthy results and to study the microstructural aspects, selected specimens were carried over metallurgical analysis and the obtained results were put forward in detail in this paper.  相似文献   

19.
In the present investigation, A390/graphite and A390/Al2O3 surface composite (SC) layers were fabricated using friction stir processing (FSP). The effect of tool rotational and traverse speeds on the microstructural, mechanical and wear characteristics of the surface layers was studied. The results revealed that increasing the tool rotational speed increases the hardness of the composite layers. The traverse speed has less significant influence on the hardness of the composite layer than the tool rotational speed. The A390/Al2O3 surface composites exhibited higher hardness than the A390/graphite surface composites. The surface composites exhibited better wear resistance than the matrix alloy. The A390/Al2O3 surface composites exhibited lower wear rates than the A390/graphite surface composites. Increasing the tool rotational reduces the wear rate of both A390/Al2O3 and A390/graphite surface composites.  相似文献   

20.
The main object of the present study is to investigate the effect of nano-sized SiC particle on the mechanical properties of the friction stir welding (FSW) joints. Prior to FSW, nano-sized SiC particles were incorporated into the joint line. A combination of three rotational speeds and three traveling speeds were applied. Microstructural evaluation using optical microscopy (OM) and scanning electron microscopy (SEM) revealed a banded structure consisting of particle-rich and particle-free regions in stir zone (SZ). The joints fabricated with rotational speed of 1250 rpm and traveling speeds of 40 and 50 mm/min, exhibited the highest mechanical properties. Owing to the presence of SiC nano-particles, at 1250 rpm and 40 mm/min, ultimate tensile strength (UTS) and percentage of elongation were improved by 31% and 76.1%, respectively. Significant increase in UTS and percentage of elongation were attributed to the pinning effect and increased nucleation sites associated with SiC nano-particles. Moreover, reinforcement particles resulted in breaking of primary grains. On the other hand, at 1250 rpm and 40 mm/min, SiC-included specimen showed superior ductility to SiC-free specimen. The fracture morphologies were in good agreement with corresponding ductility results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号