首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An oil-soluble sulfur- and phosphorus-free organic molybdate ester (ME) was synthesized. The antiwear and friction-reducing properties of ME with zinc dialkyldithiophosphate (ZDDP) in base oils were evaluated by four-ball tester. The results show that ME addition effectively reduced wear scar diameter (WSD) and friction coefficient (μ) as well as good antiwear synergism with ZDDP. The topography, composition and chemical states of typical elements on the worn scar were analyzed by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) and X-ray photoelectron spectrometer (XPS). Smooth and light topography of worn scar further confirms the good antiwear synergism of ME with ZDDP. EDX and XPS analyses indicate that tribo-chemically boundary films formed on the rubbing surface consist of metal oxides, sulfides and phosphates, leading to enhancement of the antiwear and friction-reducing properties of the lubricants, and that the considerable MoS2 layer especially plays an important role in improving antiwear and friction-reducing properties of oils. The proposed antiwear mechanism involves a synergy between ME and ZDDP.  相似文献   

2.
In this work, the interactions between two key additives in current lubricants (ZDDP and MoDTC) and the effect on tribofilm formation and tribofilm evolution under boundary lubrication are studied. The chemical and tribological characteristics of the tribofilms are probed using measurement of friction, wear and film characteristics. Tribofilms have been examined by energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS). In order to investigate the morphology of the reaction films formed, atomic force microscopy (AFM) was used. In this work, for the first time, a link between a proposed MoDTC breakdown mechanism and MoDTC tribofilm characteristics, measured on experimentally derived tribofilms, is made.  相似文献   

3.
Tribofilms formed under boundary lubrication from ZDDP and MoDTC additives alone or in different ratios in the lubricant have been studied. The tribological performance is linked to the tribofilm properties and consequently to the lubricating conditions. Tribofilms are formed using a reciprocating pin-on-plate tribometer. Surface sensitive analytical techniques, such as energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) have been used for tribofilm characterisation. The XPS peaks have been deconvoluted to characterise the species formed in the wear scar. The formation of species with different tribological properties, due to the decomposition of ZDDP and MoDTC molecules as a result of testing temperature, is shown. Surface analyses have shown that MoDTC decomposes, even in low-lubricant bulk temperature tests (30 °C), forming the same species as in high-lubricant bulk temperature tests (100 and 150 °C) but the tribofilms give different tribological performance. The effectiveness in friction reduction is shown to depend on the ratio between what are defined as high- and low-friction species in the tribofilm.  相似文献   

4.
A nitrided layer on 35CrMo steel was prepared by the ion nitriding process, and then a sulfur-nitrided layer was obtained by low temperature ion sulfuration. The results showed that both the nitrided and sulfur-nitrided surfaces improved the wear resistance efficiently under PAO lubrication, and exhibited the best wear resistance and friction-reducing property under PAO with 0.75% MoDTC lubrication. Compared with the plain and nitrided surfaces, the sulfur-nitrided surface exhibited the best synergistic effect with MoDTC displaying the lowest friction coefficient and wear volume. The mechanism of the best effect was due to MoS2 and FeS formed on the sulfur-nitrided surface.  相似文献   

5.
《Tribology International》2012,45(12):2029-2034
A nitrided layer on 35CrMo steel was prepared by the ion nitriding process, and then a sulfur-nitrided layer was obtained by low temperature ion sulfuration. The results showed that both the nitrided and sulfur-nitrided surfaces improved the wear resistance efficiently under PAO lubrication, and exhibited the best wear resistance and friction-reducing property under PAO with 0.75% MoDTC lubrication. Compared with the plain and nitrided surfaces, the sulfur-nitrided surface exhibited the best synergistic effect with MoDTC displaying the lowest friction coefficient and wear volume. The mechanism of the best effect was due to MoS2 and FeS formed on the sulfur-nitrided surface.  相似文献   

6.
The interactions and synergistic tribological effects between plasma nitrided bearing steel surface and phosphor and sulfur-free organotungsten lubricating additive compared with that of untreated steel were investigated in this paper. The tribological behaviors were examined on a four-ball friction and wear tester. The chemical characteristics of the tribofilms were analyzed by X-ray photoelectron spectroscopy (XPS). The results showed that the obvious synergistic effects of better tribological performance between nitrided surface and organotungsten additive were attributed to WN formed in the tribofilm and a stronger adsorption of organic carbon chains and higher contents of C and W element in the tribofilm.  相似文献   

7.
Low temperature ion sulfuration technology was used to obtain sulfurized layer on W doped diamond-like carbon (W-DLC) coating. The tribological behaviors of the pure W-DLC and sulfurized W-DLC coatings were investigated under PAO and MoDTC lubrication conditions. It shows that sulfurized W-DLC coatings can obviously improve their tribological performances under PAO with MoDTC lubrication. The primary reason is due to the formation of WSx on the surface of sulfurized W-DLC coating, the decomposition of additives for formation a higher ratio of Mo sulfide/Mo oxide and the graphitization for a high ratio of sp2/sp3.  相似文献   

8.
In this paper the interaction of lubricant additives with hydrogen at the frictional interface has been investigated. Three different states of the base AISI 52100 alloy steel have been tested: untreated, nitrided and sulphonitrided, with different combinations of PAO6 base oil and ZDDP/MoDTC (Zinc DialkylDithioPhosphate and Molybdenum Dialkyldithiocarbamate) additives. Experiments have been carried out on pin-on-plate reciprocating tester, immersed in the lubricant heated to 100 °C. In the boundary lubricated regime the results showed the best friction behaviour for treated surfaces tested in presence of PAO6 with additives suggesting some interaction at the frictional interface of nitrided and sulphonitrided surfaces with lubricant additives. The minimum recorded value of coefficient of friction was as low as 0.05 for the sulphonitrided sample with PAO6+MoDTC oil. In the case of the treated surfaces a characteristic “low friction phase” has been observed when tested with PAO6 with additives. After a given time, the coefficient of friction was increasing to a higher steady-state value and the duration of this low friction phase varied from sample to sample. This can be explained by the mechanism of hydrogen interaction in the boundary lubrication regime, which was postulated for the base oil case by some of the authors in their previous papers. To validate the hypothesis, an experiment has been carried out where the test was stopped at the end of the “low friction phase” and during the hold period the sample was re-saturated with hydrogen. After resuming the experiment the low friction regime was again observed. The effect of a potential synergistic mechanism between hydrogen and ZDDP or MoDTC lubricant additives on frictional behaviour of nitrided and sulphonitrided surfaces is discussed in this paper.  相似文献   

9.
Fuel economy and reduction of harmful elements in lubricants are becoming important issues in the automotive industry. An approach to respond to these requirements is the potential use of low friction coatings in engine components exposed to boundary lubrication conditions. Diamond-like-carbon (DLC) coatings present a wide range of tribological behavior, including friction coefficients in ultra-high vacuum below 0.02. The engine oil environment which provides similar favourable air free conditions might lead to such low friction levels.In this work, the friction and wear properties of DLC coatings in boundary lubrication conditions have been investigated as a function of the hydrogen content in the carbon coating. Their interaction with ZDDP which is the exclusive antiwear agent in most automotive lubrication blends and friction-modifier additive MoDTC has been studied. Hydrogenated DLC coatings can be better lubricated in the presence of the friction-modifier additive MoDTC through the formation of MoS2 solid lubricant material than can non-hydrogenated DLC. In contrast, the antiwear additive ZDDP does not significantly affect the wear behavior of DLC coatings. The good tribological performances of the DLC coatings suggest that they can contribute to reduce friction and wear in the engine, and so permit the significant decrease of additive concentration.  相似文献   

10.
The friction properties and material differences of the surface of ZDDP and MoDTC antiwear additive films, which give clear evidence of different friction coefficients in a pin-on-disc test, have been studied using atomic force microscopy (AFM)/lateral force microscopy (LFM) and force curve methods. The AFM/LFM observations show that the friction force on the surface of MoDTC additive films over the sliding area of a steel disc is lower and the friction force of ZDDP additive films is higher than that of afilmless area. Lateral force scope-trace evaluations reveal that the ratio of the friction forces on the surface of the ZDDP film, the filmless area, and the MoDTC film under the same normal force is approximately 1.5:1.0:0.7. Force curve measurements indicate that the surface materials of the ZDDP film, thefilmless area, and the MoDTC film differ according to their attractive forces, that is 29 nN for the ZDDP film, 22 nN for the filmless area, and 12 nN for the MoDTC film. These results correspond to the friction behaviour in the pin-on-disc test and also agree with the idea of the formation of solid MoS2 lubricant from MoDTC additives on the surface of the antiwear film.  相似文献   

11.
Ye  Jiping  Kano  Makoto  Yasuda  Yoshiteru 《Tribology Letters》2002,13(1):41-47
Local mechanical properties in depth and near the surface of MoDTC/ZDDP and ZDDP tribofilms, which exhibited obviously different friction coefficients in a pin-on-disc test, were determined by using a nanoindentation technique combined with in-situ atomic force microscopy (AFM) observation. Tapping-mode AFM observation revealed that the MoDTC/ZDDP film was much rougher than the ZDDP film. Nanoindentation measurement revealed that the MoDTC/ZDDP and ZDDP tribofilms possessed different elasto-plasticities around a depth of several nanometers from the surface, although both films showed the same hardness and modulus depth distributions except in the surface area. The same mechanical depth distributions indicated that both kinds of tribofilm were functionally graded materials; that is, they consisted of a layer near the surface with lower hardness and modulus and providing lubrication and a base layer with higher hardness and modulus and serving to modify property differences at the interface. Most importantly, the different elasto-plasticities near the tribofilm surfaces revealed that the MoDTC/ZDDP tribofilm possessed lower shearing yield stress than the ZDDP tribofilm. The results of this study suggest that the presence of some solid lubricants such as MoS2 just below the MoDTC/ZDDP film surface reduced the boundary friction coefficient.  相似文献   

12.
The fuel economy and reduction of harmful elements of lubricants are becoming important issues in the automotive industry. One approach to these requirements is the potential use of low‐friction coatings in engine components exposed to boundary lubrication conditions. Diamond‐like carbon (DLC) coatings, extensively studied as ultra‐low friction films to protect ductile metals surfaces for space applications, are expected to fit the bill. The main purpose of this work is to investigate the friction and wear properties of DLC coatings lubricated with molybdenum dithiocarbamate (MoDTC) and zinc dithiophosphate (ZDDP) under boundary lubrication conditions. The mechanisms by which MoDTC reduces the friction in the centirange were studied using ultra‐high vacuum (UHV) analytical tribometer. The UHV friction tests were performed on a tribofilm previously formed on selected DLC material with MoDTC and ZDDP containing oil. Ex‐situ characterizations show that the composition of this tribofilm is similar to that of a tribofilm obtained on steel surfaces in the same lubrication conditions with MoS2 single sheets dispersed inside zinc phosphate zones. However, analyses by X‐ray photoelectron spectroscopy (XPS) indicate that MoDTC and ZDDP additives seem to be more active on steel surfaces than carbonaceous ones. After UHV friction with the tribofilm formed on selected DLC and steel pin counterpart, the wear scars of both sliding surfaces were characterized by in‐situ analytical tools such as Auger electron spectroscopy, scanning Auger microscopy and micro‐spot XPS. Low friction is associated with the transfer of a thin MoS2 film to the steel pin counterpart. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This study compares tribological performance of refined, bleached and deodorized (RBD) palm kernel (PK) as an alternative lubricant. An analysis was made for chemically modified RBD PK with zinc dialkyl dithiophosphate (ZDDP) additive to determine its tribological performance using modified pin-on-disc tribotester. Commercial mineral oil (SAE 40) was used as the benchmark in this study. The conditions for this experiment are sliding speed at 1.5 m/s, a normal load at 9.81 N, weight percentage of ZDDP for 0, 3 and 5%, lubricant quantity of 2.5 ml and test duration of 60 min. The findings revealed that RBD PK oil exhibits better anti-friction and anti-wear performance compared to commercial mineral oil (SAE 40). Besides, coefficient of friction is less dependent on ZDDP concentration, but anti-wear ability is dependent on the ZDDP additive concentration. ZDDP additive acts as a good anti-wear and antioxidant additive in RBD palm kernel.  相似文献   

14.
It is demonstrated that the surface chemistry of simple-model extreme-pressure lubricant additives, measured in ultrahigh vacuum, corresponds to that measured at higher pressures, where film growth rates are monitored using a microbalance. This chemistry and reaction kinetics are used to explain the extreme-pressure lubrication behavior by successfully modeling the measured seizure load vs. additive concentration curves. It is also demonstrated, by growing ferrous chloride films on iron substrates in ultrahigh vacuum, that these have the same friction coefficients as those found for model extreme-pressure lubricants. It is found that a monolayer of a solid boundary lubricant film is sufficient to lower the interfacial friction coefficient to its minimum value. These results demonstrate that the chemistry measured under conditions of thermodynamic equilibrium at some temperature can be successfully applied to the formation of a boundary film, in the extreme-pressure regime.  相似文献   

15.
Ye  Jiping  Kano  M.  Yasuda  Y. 《Tribology Letters》2004,16(1-2):107-112
The distributions of local friction coefficients relative to the depth and near the surface of MoDTC/ZDDP and ZDDP tribofilms were successfully evaluated by using a nanoscratch method combined with in situ AFM observation. It was found that both tribofilms were friction-functionally graded materials. The friction coefficients decreased from 0.35 to 0.16 with a decrease in the scratch depth from 60 to 10 nm. It was observed that the MoDTC/ZDDP and ZDDP tribofilms possessed different shear strength levels near the surface as evidenced by the different valley-shaped friction coefficient distributions they exhibited for scratch depths ranging from 2 to 10 nm. Based on our recent nanomechanical measurements, this observation indicated that both tribofilms possessed an ultra-low friction inner skin layer at a depth of about 10 nm below the surface. Most importantly, the inner skin layer of the MoDTC/ZDDP tribofilm possessed a lower friction coefficient than that of the ZDDP tribofilm (0.084 versus 0.104) and was thinner (about 3.2 nm versus 6.4 nm). These results thus revealed that the reduction in friction attributed to the MoDTC additive originates from the different friction behavior of the inner skin layers of the MoDTC/ZDDP and ZDDP tribofilms. These nanoscratch results agree with the findings of our recent work on detecting differences in mechanical properties between these tribofilms by nanoindentation measurements.  相似文献   

16.
A non-active molybdate ester (ME) was synthesized in a batch process. Its tribological performance and its synergistic effect with ZDDP in 5CST were evaluated using a four-ball machine, and the chemistry of tribofilms was analyzed with XANES. The results indicate that ME possesses excellent anti-wear and friction-reducing properties, not load-carrying capacity. Both ME and ZDDP show excellent synergistic tribological behavior in 5CST. According to the XANES results, the tribochemical films generated from ME alone are mainly composed of MoO3, and the tribochemical films generated from the oil blends containing ME and ZDDP consist mainly of MoS2, sulphate and polyphosphate.  相似文献   

17.
The consequence of bearings exposed to shaft voltage is a very important tribological problem, especially with the increasing use of variable-frequency drives (VFDs) to control alternate current (AC) motors. The emerging behavior of gas micro-bubbles and the film forming characteristics between base oil (liquid paraffin) films with and without ZDDP additive under an external electric field (EEF) in a nanogap have been compared. Experimental results indicated that the micro-bubble emerging intensity increases slightly when the additive is involved in the base oil. The magnitude of the electric current flowing through the lubricant film closely related to the intensity of the micro-bubble emerging. No obvious difference in the film thickness can be found between the liquid paraffin films with and without ZDDP additive. The influence of the EEF on the film thickness of the liquid paraffin with the additive is more significant.  相似文献   

18.
Zinc Dialkyl Dithiophosphate (ZDDP) is a well‐known multifunctional additive for soap based lubricating greases. Polymers are being studied for their performance as lubricating grease thickeners and rheology modifiers. In this work the tribological study of ZDDP was carried out in polypropylene (PP), maleated polypropylene (mPP) and linear low density polyethylene (PE) thickened lubricating greases. Performance of lithium grease was taken as a reference. The tribological properties were evaluated using a four ball tester for EP properties and Optimol SRV‐III machine for coefficient of friction. The mechanism of action of ZDDP in polymer greases was established through analysis of the worn surface of steel balls with scanning electron microscope (SEM) and energy dispersive x‐ray spectroscopy (EDAX). The results show that the performance of ZDDP depends on the thickener system. The antiwear and EP property exhibited by ZDDP varies from polymer to polymer. Poor performance was observed with PP type thickener whereas performance in PE and lithium grease was comparable. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
《Wear》1996,199(1):60-65
An investigation of the tribochemical behavior of Ni ion implanted pure ionwas performed. Ni ion implantation increases the wear resistance of pure iron by 30–120% when liquid paraffin is used as lubricant. The wear resistance of ion implanted pure iron increases with increase in surface residual compressive stress, and decreases with increase in microhardness. When liquid paraffin containing zinc dialkyldithiophosphates (ZDDP) is used as lubricant, the wear resistance of a Ni ion implanted specimen is lower than that of an unimplanted one. This is because the wear of the specimen is controlled by the properties and amount of the antiwear reaction film, and the mechanical strengthening induced by Ni ion implantation plays a less important role in affecting the wear rate than the tribochemical effects. The existence of Ni element in the implanted pure iron retards the reactions of iron with active elements S and Zn from the additive, reduces the amount of surface antiwear film formed during the wear process, and changes the compositions of the films.  相似文献   

20.
A series of experiments is conducted to study the tribological behavior of spiral groove thrust bearings. The experimental system consists of a nominally flat upper ring mating with a stationary spiral groove lower ring in fully flooded lubrication environment. Spiral groove thrust bearings with different spiral angles subjected to different loads and speeds are tested. Stribeck-like curves are obtained and their characteristics are discussed. Transition points from mixed to hydrodynamic lubrication are experimentally established. In addition, a theoretical model is developed to gain further insight into the frictional characteristics of spiral grooves in both the hydrodynamic regime and the mixed lubrication regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号