首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using the conventional cold-formed shapes in built-up assemblies (composed members, trusses, etc.) has allowed designers of light-steel framing to widen the applications of cold-formed steel (CFS) to structures of larger scale. Built-up elements, fastened by bolts, screws or welds are usually symmetrical, more stable and of higher capacity. However, they are not addressed in the various design codes for CFS structures. Additional flexibility is caused by slippage between the constituents of a composed member, especially if bolts are used as interconnectors and hole clearances are provided to ensure the ease of assembly. The paper presents experimental studies on the behaviour of double-Z built-up members (bolted). First, twelve members are tested in weak-axis bending, to evaluate the stiffness of the member for the axis of symmetry. Second, the overall behaviour is analysed in eight compression tests on slender members. The goal is to determine the actual failure mode and overall buckling capacity of these members.  相似文献   

2.
This study provides a direct experimental verification of the AISC slenderness ratio formulas for built-up compressive members. The comparison on various code-specified slenderness ratios or provisions, which used in the AISC-ASD, AISC-LRFD, AS-4100, and CSA S16-01, are presented. The 0.75 rule, which states that the slenderness ratio of component element of built-up member should not exceed three-fourths times the governing slenderness ratio of built-up member, seems justified according to the tests. The governing slenderness ratio of built-up member could be either the modified or the unmodified one — as specified in the AISC Specifications. The test results indicate that the built-up members with component slenderness ratio of 0.75 to 1.0 times the governing slenderness ratio (modified or unmodified) could also furnish a quite encouraging design outcome. The use of separation ratio (α) in built-up compression members results in the decrease of design strength when compared to one with no use of separation ratio.  相似文献   

3.
对18根冷弯薄壁型钢开口三肢拼合立柱的轴压性能进行了试验研究,试件分为A、B两种截面类型:A类由3根冷弯薄壁C型钢拼合而成;B类由2根冷弯薄壁C型钢和1根U型钢拼合而成。得到了各试件的荷载-位移曲线和破坏特征,并将试验结果与中、美两国相关规范“有效宽度法”和“直接强度法”计算结果进行了初步对比分析。研究结果表明:两类截面长柱(LC)系列立柱的破坏特征分别为弯扭屈曲、弯曲屈曲,而中柱(MC)系列立柱A类截面为畸变屈曲、B类截面为畸变屈曲和弯曲屈曲,短柱(SC)系列立柱均为局部屈曲和畸变屈曲。AISI有效宽度法计算结果对于A、B两类截面LC系列立柱偏于安全;对于SC系列立柱则偏不安全;对于MC系列立柱吻合较好。AISI直接强度法计算结果对于A类截面LC和MC系列立柱偏于安全;对于SC系列立柱则偏不安全;对于B类截面立柱直接强度法计算结果与试验结果相差-16-5%~11-2%。《冷弯薄壁型钢结构技术规范》计算结果与试验结果相比,LC系列立柱偏于安全,而MC和SC系列立柱计算结果与试验结果吻合较好,相差分别为 -8.7%~4.7%和 -7.3%~13.7%。  相似文献   

4.
The paper deals with the buckling behaviour of stainless steel members with the main focus on developing design formulae for use in the latest version of the European Standard EN 1993-1-4: Eurocode 3-Design of steel structures-Part 1-4: General rules — Supplementary rules for stainless steel. Brussels; 2005.It is based on numerical simulations of single span members of various section type, which are subjected to axial compression and bending. Both flexural buckling and lateral-torsional buckling are dealt with so that the buckling behaviour of both I-sections and hollow sections can be covered.On the basis of these numerical results interaction factors have been derived in context with the design model for member design in Eurocode 3-1-1. For statistical evaluation the test results available from other authors have been used.The outcome of this investigation has been incorporated in the present EN 1993-1-4 as a recommendation in restricted form.  相似文献   

5.
对不同长细比的8根四肢拼合冷弯薄壁型钢截面立柱的轴压性能进行试验研究,在试验研究的基础上建立考虑材料、几何和接触非线性的有限元模型,并通过对试验试件的数值模拟,验证有限元方法的正确性。采用数值方法分析长细比、连接螺钉间距、截面翼缘宽厚比对四肢拼合冷弯薄壁型钢截面立柱轴压性能的影响。结果表明:试件最终破坏均呈现局部屈曲和畸变屈曲的破坏模式;四肢拼合冷弯薄壁型钢截面立柱的轴压性能具有"1×4≥4"的拼合效应;随着长细比的增大,四肢拼合立柱的最大承载力和刚度逐渐降低;当螺钉间距在150~450mm之间变化时,四肢拼合立柱的最大承载力和刚度变化不大;减小四肢拼合立柱截面的翼缘宽厚比,可以显著提高其最大承载力。  相似文献   

6.
V. Ungureanu  M. KoteŁko  R.J. Mania  D. Dubina 《Thin》2010,48(10-11):818-826
Short members of thin-walled cold-formed (TWCF) steel sections, in compression and bending, fail by forming local plastic mechanisms. Taking into account the localised buckling pattern, the collapse of slender members, due to the interaction between local and overall buckling modes, is always characterised by local plastic mechanism failure mode. Based on these two observations, the ultimate strength in interactive buckling of these members can be regarded as an interaction between localised plastic mode and overall elastic one.The yield line mechanism method has been widely used to predict the sectional strength (e.g. local) of thin-walled cold-formed steel members that involve failure mode characterized by local collapse mechanisms. This method can be also used to study post-collapse behaviour and to evaluate the load-carrying capacity, ductility and energy absorption.This paper is based on previous studies and some latest investigations of authors, as well as the literature collected data. It represents an attempt to make an inventory, classify and range geometrical and analytical models for the local-plastic mechanisms aiming to characterize the ultimate capacity of some of the most used cold-formed steel sections in structural applications.  相似文献   

7.
曾祥蓉 《山西建筑》2005,31(20):59-60
详细介绍了预应力加固混凝土受弯构件中预应力在非线性有限元分析中的模拟方法,以预应力碳纤维布加固混凝土梁为例,采用ANSYS有限元分析软件,对其进行仿真分析,提出了升温法作为模拟对碳纤维布施加预应力的方法,并详细介绍了采用升温法的原理及具体模拟过程.  相似文献   

8.
冷弯薄壁型钢结构多采用有效截面法对构件承载力进行计算,该方法计算繁杂且未考虑构件的畸变屈曲性能。直接强度法采用全截面计算各类参数,能够考虑各种单独屈曲模式及其相关屈曲对构件稳定性能的影响,但目前该方法并不能应用于压弯构件。对冷弯薄壁C形钢绕强轴偏压构件的稳定性能进行参数分析,探讨了构件长度、偏心距、腹板高厚比、翼缘宽厚比和卷边高厚比等因素对构件承载力的影响规律。结合有限元分析结果,基于轴压构件和纯弯构件的直接强度法公式,提出了冷弯薄壁型钢绕强轴偏压构件的极限承载力计算方法。  相似文献   

9.
A series of tests on curved concrete filled steel tubular (CCFST) built-up members subjected to axial compression is described in this paper. Twenty specimens, including 18 CCFST built-up members and 2 curved hollow tubular built-up columns, were tested to investigate the influence of variations in the tube shape (circular and square), initial curvature ratio (βr, from 0 to 7.4%), nominal slenderness ratio (λn, from 9.9 to 18.9), section pattern (two main components, three main components and four main components), as well as brace pattern (battened and laced) on the performance of such composite built-up members. The experimental results showed that the ultimate strength and stiffness of CCFST built-up specimens decreased with increasing βr or λn. Different load-bearing capacities and failure modes were obtained for the battened and laced built-up members. A simplified method using an equivalent slenderness ratio was suggested to calculate the strength of CCFST built-up members under axial compression.  相似文献   

10.
冷弯薄壁型钢C形截面构件受弯承载力试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究冷弯薄壁型钢构件的受弯性能,对卷边形式为直卷边、斜卷边和复杂卷边的冷弯薄壁型钢C形截面受弯构件进行了试验研究。共计24个试件,分为12组试验,其中纯弯试验和非纯弯试验各6组。试验结果表明,卷边形式是影响构件受弯承载力的重要因素。试验中出现了局部屈曲、畸变屈曲以及局部和畸变的相关屈曲。对比两种受弯状态下的承载力发现,非纯弯时试件的承载力比纯弯时均有所提高,但提高的幅度和试件的屈曲模式有关,当发生畸变屈曲时提高得较多,而发生局部屈曲时提高得较少。利用有限元程序ANSYS对试验进行模拟,模拟结果与试验结果吻合较好。  相似文献   

11.
铝合金受弯构件整体稳定性的试验研究   总被引:2,自引:0,他引:2  
通过试验研究工字型铝合金挤压构件在纯弯荷载作用下的整体稳定性。构件的材料包括两种:6061-T6和6063-T5,分别代表弱应变强化合金与强应变强化合金。构件截面包括双轴对称与单轴对称两种类型,构件的端部严格约束了侧向的转角。试验过程中荷载持续增加,直至达到构件承载力峰值。试验共测量了40根铝合金梁在纯弯荷载下的稳定承载力,铝合金梁的破坏形式涵盖了弹性失稳和弹塑性失稳。材性拉伸试件分别从每种材料的铝合金梁的翼缘和腹板上切取,共进行了8组试验。并且把试验结果与早期研究得到的计算方法相比较,证明了计算方法的准确性。  相似文献   

12.
对冷弯薄壁型钢四肢拼合箱形截面立柱进行轴压和偏压试验研究,得到各试件的荷载-位移曲线和极限承 载力,详细分析了试件的屈曲模式和破坏特征。建立了考虑材料、几何和接触非线性的有限元模型对试验试件进 行模拟分析,两者吻合较好,验证了有限元方法的正确性。进而采用数值方法分析了构件长细比、螺钉间距和位 置、偏心距和偏心方向对该类拼合立柱偏压受力性能的影响。结果表明:双向刀铰支座可以很好的实现铰接;螺 钉间距为300mm时,拼合柱各肢整体协同工作性能良好;轴压和绕弱轴偏压试件最终破坏模式均为绕弱轴整体弯 曲,绕强轴偏压时,试件破坏模式为弯扭失稳,但扭转不明显;拼合柱的偏压极限承载力和刚度随长细比和偏心 距的增大而降低;偏心距相同时,拼合柱绕强轴偏压的极限承载力和刚度比绕弱轴偏压略高。  相似文献   

13.
为研究高强钢压弯构件的局部稳定性能,对5个Q460C和5个Q690D钢焊接箱形截面构件进行了单向偏压试验,分析了其破坏形式、局部稳定性能以及承载力;将实测承载力与欧洲规范EN 1993-1、我国标准GB 50017—2017和美国规范ANSI/AISC 360-16相关公式计算结果相比较,以验证各规范对Q460C钢和Q690D钢焊接箱形截面压弯构件屈曲后强度计算的适用性。研究结果表明:所有高强钢焊接箱形截面压弯构件均在柱中附近发生局部屈曲破坏;由轴向压力-轴向压缩变形或轴向压力-水平位移曲线可知,其为极值点失稳;构件的轴向压力-水平位移或轴向压力-应变曲线的形状和局部屈曲模式有关;在翼缘宽厚比为28.1~56.3、腹板高厚比为40.2~80.4、偏心距为20~50 mm范围之内,EN 1993-1和GB 50017—2017中的屈曲后强度计算公式仍然适用于Q460C和Q690D钢焊接箱形截面压弯构件,而ANSI/AISC 360-16中的相关公式需要进一步修正。  相似文献   

14.
The final version of EN1993-1-1, EUROCODE 3 [EN1993-1-1. Eurocode 3. Design of steel structures, general rules and rules for buildings. 2005] for Steel Structures provides two alternatives for the buckling check of members subjected to axial compression and bending by interaction formulae, which are called there Method 1 and Method 2. This paper presents the characteristics, the background and the use of Method 2. The analogous presentation of Method 1 has already been given in [Boissonnade N, Jaspart J-P, Muzeau J-P, Villette M. New Interaction formulae for beam-columns in Eurocode 3. The French-Belgian approach. Journal of Constructional Steel Research 2004;60;421-31].The Method 2 formulae have been derived on the basis of the general format of the interaction concept of existing codes, e.g. the ENV-rules; however with advanced numerical background and consistent classification of the buckling modes. In this respect new improved interaction factors were developed from a wide scope of numerical simulations and the concept of the formulae was focussed distinctly on describing the modes of in-plane and out-of-plane buckling for members susceptible to fail either in flexural buckling or in lateral-torsional buckling. As result two sets of formulae are provided, which each cover a clear scope of physical member behaviour. Hereby, the specific effects of intermediate lateral restraints—as often found in steel structures—have also been included.The Method 2 formulae aim at providing buckling rules with compact simplified interaction factors and transparent application for standard cases.  相似文献   

15.
N. S. Trahair

S. Bild 《Thin》1990,9(1-4):269-307

This paper presents a detailed treatment of the non-linear elastic biaxial bending and torsion of thin-walled open section members. The treatment is valid for uniform members of linear elastic material, and is limited to small strains and rotations, and moderate deflections. Shear straining of the mid-surface of the member wall is neglected, and it is assumed that the member does not distort or buckle locally. The effects of initial deformations, loads, stresses, and strains are incorporated.

The treatment is based on non-linear strain-displacement relationships, and these are used to derive the non-linear equilibrium and tangent stiffness equations in forms which are suitable for computer solution by the finite element method.

Approximate linear and non-linear differential equilibrium equations are derived, as are the differential equilibrium equations and the energy equation for neutral equilibrium at bifurcation buckling, and these are then related to the classical equations developed by Timoshenko, Vlasov, and others.  相似文献   


16.
通过算例计算,对非对称配筋大偏心受压构件双曲率弯曲时截面设计这一问题进行了分析,指出应用现行规范进行非对称配筋大偏心受压构件双曲率弯曲时截面设计的注意事项,并对如何进行这部分教学内容进行探讨,旨在提高教学质量并锻炼学生质疑精神和解决工程问题的能力。  相似文献   

17.
Several modern lightweight space structures utilize curved and continuous compression members, although the behaviour of these members is not well understood. In many cases, the members are subjected to eccentric loading, which creates another difficulty in predicting their behaviour. Understanding the behaviour of curved and continuous members is certainly essential for the accurate modelling of the structures that use them, and for the reliable prediction of their strength, ductility and overall performance. The generic study presented in this paper uses theoretical and nonlinear numerical analyses to quantify the effect of curvature, continuity and load eccentricity on the behaviour of compression members. The work, although fundamental in nature, is of significant benefit to practical designs involving curved compression members.  相似文献   

18.
不同截面形式高强冷弯薄壁槽钢构件受弯承载力试验研究   总被引:2,自引:0,他引:2  
对36个屈服强度为550 MPa的高强冷弯薄壁槽钢受弯试件进行静力试验研究,考虑了加劲形式和卷边形式对试件受弯性能的影响,其中加劲形式分为无加劲、翼缘中间V形加劲和翼缘及腹板中间V形加劲3种,卷边形式分为直卷边、斜卷边和复杂卷边3种。试验结果表明:加劲形式和卷边形式是影响试件受弯承载力和屈曲模式的重要因素;与无加劲形式相比,采用板件中间V形加劲有效减小了板件宽厚比,试件受弯承载力提高了30%~70%;同种加劲形式下,短(直、斜)卷边试件受弯承载力提高幅度最大,复杂卷边试件提高幅度次之,长(直、斜)卷边试件提高幅度最小;试验过程中试件发生了局部屈曲、畸变屈曲与局部和畸变相关屈曲。对试验进行了有限元模拟,模拟结果与试验结果吻合较好。  相似文献   

19.
《Thin》1988,6(5):355-369
The classical theory of thin-walled members has been applied extensively in practice. Since the theory was based on the assumption of no shear deformation, it is unable to reflect some of the important phenomena such as shear lag in structures.In mixed variational principles, both stresses and displacements are taken as variables, and they create equal possibilities to yield good results both in stresses and in displacement. Based on a mixed variational principle and introducing the co-ordinate functions in the cross-section, a mixed variational method has been presented.1 Following this method, the method of solution for thin-walled members of open cross-sections in general bending and torsion is derived in this paper. This method is more general than the classical one and can be applied to members with rows of openings. It can also be applied to problems involving tension, bending and torsion actions, and simple analytical solutions in closed form can be obtained. Both warping and shear lag phenomena can be dealt with.  相似文献   

20.
通过12个Q550D钢短柱的单向偏压试验,研究高强钢焊接箱形截面压弯构件的局部稳定性能和极限承载力;将极限承载力与美国、欧洲和中国钢结构设计规范相关公式计算结果相比较,以验证各规范对Q550D钢焊接箱形截面压弯构件屈曲后强度计算的适用性。结果表明,在翼缘宽厚比b/t=27.9~56.1,腹板高厚比h/t=40.5~80.1,偏心距ey=20~50mm,欧洲和中国规范中的相关公式有较高精度,仍然适用于550D钢焊接箱形截面压弯构件屈曲后强度计算,而美国规范中相关公式有时偏不安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号