首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study explored the possibility of using waste organic solvent as the source of volatile organic compound (VOC) and it served as a reducing agent of selective catalytic reduction (SCR) deNOx process, in which the VOC itself can be catalytically oxidized on the mesoporous Cu and/or Al substituted MCM-41 catalysts. The synthesized Cu–Al–MCM-41 catalysts were extensively characterized by powder low-angle X-ray diffraction (XRD), N2 adsorption–desorption measurements, transmission electron microscopy (TEM), UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS), 27Al magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR), electron paramagnetic resonance spectroscopy (EPR) and inductively coupled plasma–mass spectrometer (ICP–MS) analysis. The XRD, TEM and N2 adsorption–desorption studies clearly demonstrated the presence of a well ordered long range hexagonal array with uniform mesostructures. The Cu–Al–MCM-41 materials showed a better long-term-stability than that of copper ion-exchanged H–ZSM-5 (Cu–ZSM-5) zeolite. The Cu–Al–MCM-41 material was found to be an efficient catalyst than that of Cu–MCM-41 without aluminum for the simultaneous catalytic abatement of NOx and VOCs, which was attributed to the presence of well dispersed and isolated Cu2+ ions on the Cu–Al–MCM-41 catalyst as observed by UV–Vis DRS and EPR spectroscopic studies. And the presence of aluminum (Al3+ ions) within the framework of Cu–Al–MCM-41 stabilized the isolated Cu2+ ions thus it led to higher and stabilized activity in terms of NOx reduction.  相似文献   

2.
Mesoporous molecular sieves, MCM-41, were synthesized from sepiolite using acid leaching, followed by hydrothermal reconstruction and then calcinations at 540°C for 5 h. The structures and the porosity of MCM-41 were investigated by means of small-angle X-ray diffraction patterns, Brunaer-Emmett-Teller (BET), 29Si MAS NMR, Fourier transform infrared (FTIR), and high resolution transmission electron microscope (HRTEM) methods. The results showed that the hexagonal MCM-41 was formed in an alkaline solution of pH 12, when crystallization was carried out at 100°C for 24 h. The specific surface area, pore diameter, and pore volumes of MCM-41 from sepiolite were 1036 m2/g, 2.98 nm, and 1.06 cm3/g, respectively. 29Si MAS NMR results revealed that amorphous silica decomposed into Si–O chains consisting of two layers of Si atoms, with Q 3 configurations resulting in an increase in the fraction of Q 3 configuration during the crystallization of post-Mg-extraction sepiolite. The IR results illustrated that the complex of ≡≡SiO–CTA+ was formed during the synthesis of MCM-41 from post-Mg-extraction sepiolite.  相似文献   

3.
Biofuel production from vegetable oil is potentially a good alternative to conventional fossil derived fuels. Moreover, liquid biofuel offers many environmental benefits since it is free from nitrogen and sulfur compounds. Biofuel can be obtained from biomass (e.g. pyrolysis, gasification) and agricultural sources such as vegetable oil, vegetable oil sludge, rubber seed oil, and soybean oil. One of the most promising sources of biofuel is vegetable oil sludge. This waste is a major byproduct of vegetable oil factories. It consists of triglycerides (61%), free fatty acid (37%) and impurities (2%). The hydrocarbon chains of triglycerides and free fatty acid are mainly made up of C16 (30%) and C18 (36%) hydrocarbons. The others consist of C12-C17 hydrocarbon chains. Transesterification can help in converting vegetable oil sludge into biofuel. The disadvantage of this method is that a large amount of methanol is required. The alternative method for this conversion is catalytic cracking. The objective of this research is to evaluate and compare the pyrolysis process with cracking catalytic reaction of vegetable oil sludge by Micro-activity test MAT 5000 of Zeton-Canada.A ZSM-5/MCM-41 multiporous composite (MC-ZSM-5/MCM-41), was successfully synthesized using silica source extracted from rice husk. The material has the MCM-41 mesoporous structure, and its wall is constructed by ZSM-5 nanozeolite crystals. The porous system of the material includes pores of the following sizes: 5 Å (ZSM-5 zeolite), 40 Å (MCM-41 mesoporous material), and another porous system whose diameter is in the range of 100-500 Å (mesoporous system) formed by the burning of organic compounds that remain in the material during the calcination process. This pore system contributes to an increase in the catalytic performance of synthesized material.The results of vegetable oil sludge cracking reaction show that the product consists of fractions such as dry gas, liquefied petroleum gas (LPG), gasoline, light cycle oil (LCO), and (heavy cycle oil) HCO, which are similar to those of petroleum cracking process.MC-ZSM-5/MCM-41 catalyst is efficient in the catalytic cracking reaction of vegetable oil sludge as it has higher conversion and selectivity for LPG and gasoline products in comparison to the pyrolysis process. Product distribution (% of oil feed) of cracking reaction over MC-ZSM-5/MCM-41 is coke (3.4), total dry gas (7.0), LPG (31.1), gasoline (42.4), LCO (8.9), HCO (7.2); and that of pyrolysis are coke (19.0), total dry gas (9.3), LPG (16.9), gasoline (28.8), LCO (13.7), and HCO (12.3).These results have indicated a new way to use agricultural waste such as rice husk for the production of promising catalysts and the processing of vegetable oil sludge to obtain biofuel.  相似文献   

4.
Iron/steel making industry is a weed that produces large quantities of slag and dust. The objective of the present study was to develop a procedure for obtaining and characterizing photocatalysts derived from this waste for chromium remediation. The MCM-41 was synthesized via sodium silicate (Na2SiO3) derived from Blast Furnace Slag (BFS), and ZnO and ZnS were synthesized based on zinc extracted from Electric Arc Furnace Dust (EAFD). Subsequently, ZnO/ZnS were sono-chemically loaded on the MCM-41 and were tested for the Cr (IV) photoreduction. The resultant ZnO, ZnS, MCM-41, and composites were characterized by X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), N2adsorption–desorption isotherms, Fourier-transform infrared (FT-IR) spectrometry, Dynamic Light scattering, and Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). A regular hexagonal structure of typical mesoporous MCM-41 had been proven by small-angle XRD, HRTEM, and N2 adsorption–desorption. The photoreduction activity of ZnS–ZnO/MCM-41 nanocomposite has obvious efficiency compared to ZnO and ZnO/MCM-41, achieving a 94% photoreduction of Cr (VI) in 180 min under UV irradiation. The slight activity loss after 4 cycles (84.7%) reveals the good photoreduction properties of catalysts. Based on these results, ZnS–ZnO/MCM-41 composite material seems to be high efficiency, green, stable, environment, and economical alternative to be used as a photocatalyst for the reduction of Cr (VI).  相似文献   

5.
The pure silica mesoporous molecular sieve MCM-41 was synthesized under hydrothermal conditions. Pd/Si-MCM-41 was prepared by the incipient wetness impregnation of pure silica MCM-41 with PdCl2 as precursor. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption–desorption isotherms at 77 K, inductively coupled plasma (ICP) spectroscopy measurements. The formation of Pd particles reduced the crystalline character of Si-MCM-41, but the structure of Si-MCM-41 framework was retained. The designed Pd/Si-MCM-41 mesoporous material was used as catalysts for hydrogenation of rosin, and showed excellent catalytic performance. Such outstanding catalytic performance should be attributed to the proper size of Pd particles and its high dispersion.  相似文献   

6.
在酸性水热条件下,通过附晶生长法合成Y-Beta/MCM-41复合分子筛,并对其结构、形貌、水热稳定性及催化性能进行研究。结果表明,合成的Y-Beta/MCM-41复合分子筛比表面积高和水热稳定性好,对α-甲基萘的催化裂解性能明显优于机械混合物,表现出良好的催化性能。  相似文献   

7.
A series of Fe3+ containing catalysts were synthesized using ion-exchange technique over hierarchically porous ZSM-5 (M-ZSM-5) and micro-mesoporous composite ZSM-5/MCM-41 (ZSM-5/MCM-41), respectively. The prepared catalysts were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, N2 adsorption–desorption, UV–Vis spectroscopy, temperature programmed reduction and inductively coupled plasma-optical emission spectroscopy. The characterization results exhibit that the hierarchically porous ZSM-5 was synthesized with intracrystalline mesopores, while the micro-mesoporous composite ZSM-5/MCM-41 was prepared with the well-ordered mesopores. Furthermore, the results also prove that the existence of iron in the catalysts was mainly presented in the form of Fe3+ ions. Catalytic performances of the samples for phenol hydroxylation were compared by using H2O2 as oxidant. Under the optimized conditions, Fe3+ ion-exchanged M-ZSM-5 (Fe-M-ZSM-5) shows that a phenol conversion of 42.3% obtained with 92.5% selectivity to dihydroxybenzenes, whereas Fe3+ ion-exchanged ZSM-5/MCM-41 (Fe-ZSM-5/MCM-41) give 46.2% phenol conversion and 90.1% dihydroxybenzenes selectivity, which are all better than most reported results. The recyclability tests show that Fe-ZSM-5/MCM-41 with ordered mesoporous structure and bigger surface area has better anti-deactivation performance than Fe-M-ZSM-5. The excellent catalytic performances were due to the improved diffusion performance with newly created mesopores and the highly active Fe3+ species obtained by ion-exchange technique.  相似文献   

8.
MCM-41 mesoporous silicas were covalently modified with polyacrylamide (PAAm) by a novel grafting strategy. The effect of various parameters such as monomer concentration, reaction time, and temperature on the content of PAAm onto MCM-41 silicas were studied. Modified silicas were characterized by X-ray diffraction (XRD), infrared spectroscopy, FT-IR, thermogravimetric analysis, nitrogen adsorption–desorption analyses, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy which confirmed the grafting process. According to XRD, SEM and TEM results, PAAm-modified MCM-41 silica did not show changes in its morphology and mesostructure by comparing with pristine MCM-41. Nitrogen adsorption–desorption studies showed that the attaching of PAAm onto MCM-41 silica decreased the values of pore size, pore volume and surface area.  相似文献   

9.
A micro-mesoporous ZSM-5/MCM-41 composite molecular sieve (ZM13) was synthesized and tested as an FCC catalyst additive to enhance the yield of propylene from catalytic cracking of vacuum gas oil (VGO). The catalytic performance of the additive was assessed using a commercial equilibrium USY FCC catalyst (E-Cat) in a fixed-bed micro-activity test unit (MAT) at 520?°C and various catalyst/oil ratios. MCM-41, ZSM-5 and two ZSM-5/MCM-41 composites were systematically characterized by complementary techniques such as XRD, BET, FTIR and SEM. The characterization results showed that the composites contained secondary building unit with different textural properties compared to pure ZSM-5 and MCM-41. MAT results showed that the VGO cracking activity of E-Cat did not decrease by using these additives. The highest propylene yield of 12.2 wt% was achieved over steamed ZSM-5/MCM-41 composite additive (ZM13) compared with 8.6 wt% over conventional ZSM-5 additive at similar gasoline yield penalty. The enhanced production of propylene over composite additive was attributed to its mesopores that suppressed secondary and hydrogen transfer reactions and offered easier transport and accessibility to active sites. Gasoline quality was improved by the use of all additives except MCM-41, as octane rating increased by 6?C12 numbers.  相似文献   

10.
Nano-scale silver supported mesoporous molecular sieve Ag/MCM-41 was directly prepared by one-pot synthesis method. The prepared sample was characterized by XRD, TEM, and N2 sorption. The results showed that the sample of Ag/MCM-41 had no appreciable incorporation of silver into the mesoporous matrix of MCM-41 with good crystallinity, and silver nanoparticles were dispersed inside or outside of the channels in the mesoporous host. The catalytic performance of the sample for the cyclohexane liquid-phase oxidation into cyclohexanone and cyclohexanol by oxygen in the absence of solvents without inducing agents was investigated. The 83.4% selectivity to cyclohexanol and cyclohexanone at 10.7% conversion of cyclohexane was obtained over Ag/MCM-41 catalyst at 428 K for 3 h. The turn over numbers (TONs) of Ag/MCM-41 was up to 2946. The catalytic activity of Ag/MCM-41 was also compared with Ag/TS-1 as well as Ag/Al2O3. The results indicated that Ag/MCM-41 showed superior activity to both Ag/TS-1 and Ag/Al2O3. A calcined Ag/MCM-41 was found to be an efficient catalyst for the cyclohexane oxidation into cyclohexanol and cyclohexanone using oxygen as oxidant.  相似文献   

11.
The aim of the present work was to study the performance of mesoporous catalysts in the catalytic cracking of an LDPE+LLDPE+EVA copolymer. Mesoporous catalysts, including MCM-41, Nano-MCM-41, Al-Nano-MCM-41, MMZ-ZSM-5 and Meso-MFI, were applied for this reaction. Also, microporous HZSM-5 was used for a comparison. All of the catalysts showed higher decomposition abilities than thermal decomposition. The catalytic conversion of the LDPE+LLDPE+EVA copolymer was highest with the use of Meso-MFI due to its pore size and strong Br?nsted acidity, with high selectivity for lower olefin and gasoline range hydrocarbon. Both MMZ-ZSM-5 and Al-Nano-MCM-41 have an acid site that induced the decomposition reactions, and thus, produced compounds with lower carbon numbers in liquid products. MCM-41, which exhibits no acidity, showed a similar distribution of liquid products to that via thermal cracking, while Nano-MCM-41 showed better catalytic cracking ability due to its high surface area.  相似文献   

12.
The catalytic conversion of bio-platform molecules into desired products can be an important unit for the future biorefinery. The present contribution consists of synthesis of solid acid catalyst comprising 20 % 12-tungstophosphoric acid (TPA) and MCM-41 and its characterization by various physico-chemical techniques such as fourier transform infrared, X-ray diffraction surface area measurement (BET method), transmission electron microscopy and total acidity. The use of synthesized catalyst was explored for esterification of bio-platform molecules such as succinic acid and malonic acid with different alcohols. The catalyst shows high activity in terms of higher yields towards all diesters. The product selectivity towards the mono and diester was found to be the same for TPA alone and supported system, TPA2/MCM-41, that also confirms the uniform distribution of the TPA on MCM-41. The excellent catalytic performance is attributed to the large surface area and pore diameter of the mesoporous support, MCM-41 as well as the Bronsted acid strength of TPA, as active sites. The catalyst shows the potential of being used as a recyclable catalytic material after simple regeneration without significant loss in activity.  相似文献   

13.
A copper(II) complex containing tetradentate N2O2 Schiff base ligand immobilized into aminopropyl-functionalised MCM-41 (mobile crystalline material number 41), was prepared and characterized by Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, N2 adsorption–desorption and inductively coupled plasma analysis techniques. The novel heterogeneous catalyst, MCM-41-pr-NH2-CuL, can be successfully applied for efficient and selective oxidation of different primary and secondary alcohols to the corresponding carbonyl compounds using hydrogen peroxide as an oxidant in acetonitrile at 60 °C. The effect of reaction parameters such as solvent, amount of catalyst, temperature and kind of oxidant on the oxidation of benzyl alcohol was also studied. The prepared catalyst could be recovered and reused four times without important loss of its catalytic performance. The heterogeneous MCM-41-pr-NH2-CuL catalyst was found to be catalytically more active in the oxidation of alcohols compared to the similar type of copper(II) Schiff base complex in homogeneous media under the same reaction conditions.  相似文献   

14.
A series of cerium ion-exchanged MCM-22 catalysts was prepared by post-synthetic ion-exchange route. The resultant cerium-exchanged MCM-22 zeolite was systematically characterized using FTIR, powder X-ray diffraction (XRD), N2 adsorption and desorption analysis, scanning electron microscopy, thermogravimetric analysis and diffuse reflectance UV–Vis spectral studies. The XRD pattern and FTIR data confirmed the MCM-22 structure. The diffuse reflectance UV–Vis spectroscopy showed coordination nature of the cerium ions. The cerium exchange MCM-22 zeolite showed promising activity for the esterification of fatty acids, achieving a maximum conversion of 75% at 70 °C in 24 h. Importantly the catalytic activity increases upon recycle due to hydrophic nature of recycled catalyst.  相似文献   

15.
In this study, a new kind of solid acid catalyst p-toluenesulfonic acid/MCM-41/ceramic membrane was synthesized by in situ synthesis and impregnation method, which has shown its favorable catalytic activity, as verified in the transesterification and catalyst characterization. The catalyst was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier-transform infrared spectroscopy. The transesterification of palm oil and methanol results showed that p-toluenesulfonic acid/MCM-41/ceramic membrane had the highest catalytic activity with immersing p-toluenesulfonic acid solution concentration of 0.15 mol/L. Different operation parameters of the transesterification of palm oil with methanol, such as catalyst amount, catalytic mass ratio, reaction time, reaction temperature and methanol/palm oil molar ratio were investigated. Under the optimum conditions of 4 % of fresh catalyst (catalytic mass ratio is 4.37 %), 80 min of reaction time, reaction temperature of 120 °C and methanol to palm oil molar ratio of 12:1, a relatively high fatty acid methyl ester yield of 95.6 % was obtained.  相似文献   

16.
CuO/Bi2O3 (CuO/Bi2O3/MCM-41) nanoparticles supported on MCM-41 were synthesized by a facile impregnation method. The products were characterized by nitrogen adsorption/desorption, X-ray diffraction (XRD), H2 temperature programmed reduction (H2-TPR) and scanning electron microscopy (SEM). XRD patterns indicated the presence of crystalline CuO and Bi2O3 phase for CuO/Bi2O3/MCM-41 catalyst. TPR results revealed CuO nanoparticles were dispersed well on MCM-41. SEM results showed that the nanoparticles were located on the MCM-41. The activity of the catalysts towards ethynylation of formaldehyde for 1,4-butynediol synthesis was evaluated at atmospheric pressure. Compared with unsupported CuO/Bi2O3 and commercial Cu/Bi-based catalyst, CuO/Bi2O3/MCM-41 catalyst showed maximum conversion (51%) and selectivity (94%) towards 1,4-butynediol. The results show that CuO/Bi2O3 catalysts supported on MCM-41 have potential for 1,4-butynediol synthesis in industrial application.  相似文献   

17.
The objective of this work is to give a comparative characterization of aluminosilicate MCM-41 and zeolite Y, in particular with respect to acidity and catalytic properties in hydrocarbon cracking. These studies are compared to a well investigated amorphous aluminosilicate, based on the fact that the new mesoporous MCM-41 materials are a mixture of ordered material with amorphous pore walls. Characterization of differently treated MCM-41 materials and zeolite Y for comparison by N2 sorption, XRD, TPAD (Temperature Programmed Ammonia Desorption) with in situ FT-IR in combination with catalytic testing by MAT (Micro Activity Test) is discussed. Combination of the characterization data and the catalytic testing gives an interesting explanation of the surface properties especially in comparison with zeolite Y.  相似文献   

18.
Abstract

Mesoporous mobil composition of matter 41 (MCM-41) (with template) was used directly as a new filler for naural rubber (NR). Inside the pore chanels, and on the outer surface of the MCM-41 particle, were cationic surfactant CTAB and Pluronic F127 (molecular weight = 11 500) mixture. Results showed that the tensile properties and the thermal stability of NR/mesoporous MCM-41 (with template) nanocomposite were improved at low filler loading as compared with those of NR compound. Scanning electron microscopy observations revealed that enhancement of the interface was obtained by adding MCM-41 (with template).  相似文献   

19.
MCM-41 mesoporous molecular sieve materials are synthesised using aqueous ammonia solution to adjust the pH of the reactant gel. Highly ordered MCM-41 with Si/Al ratio as low as 14 was obtained and characterised by27A1 MAS NMR, XRD, N2-adsorption, benzene sorption, and NH3-TPD measurements. The acidity of MCM-41 materials obtained in this system was conveniently generated through straightforward calcination of the as-synthesised sample. More mild acidic sites generated could be due to the avoidance of the multiple calcination procedure and/or the trace sodium species which are the poisons to Brønsted acid. The catalytic activities forn-heptane cracking and isomerization ofm-xylene were investigated, and these were in accordance with the known properties of MCM-41.  相似文献   

20.
Gallium-promoted sulfated zirconia (SZ) was confined inside pure-silica MCM-41 (abbreviated as SZGa/MCM-41), where the latter served as a host material. It was prepared by direct dispersion of metal sulfate in the as-synthesized MCM-41 materials, followed by thermal decomposition. The SZGa/MCM-41 catalysts were characterized by XRD, N2 adsorption, HRTEM, DRIFT, NH3-TPD, and TPR. The experimental results showed that the ordered porous host structure was still maintained in the catalyst. SZ was in meta-stable tetragonal phase and highly dispersed on the interior surface of MCM-41 even at a high loading of 50 wt%. Additionally, a small fraction of SZ nanoparticles on the external surface of MCM-41 was obtained. The catalytic activity of SZGa/MCM-41 was examined in n-butane isomerization. In comparison to SZ/MCM-41 without promoter, the catalytic activities of the Ga-promoted catalysts were greatly improved. The reason proposed for the higher activity of the Ga-promoted catalysts was that Ga enhances the oxidizing ability of the catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号