首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
为提高液浮陀螺仪静态误差模型系数中二次项系数的标定精度,提出了线振动台振动整周期的方法来标定液浮陀螺仪。在充分考虑线振动台的寄生转动和垂直度误差,测试时产生的角振动以及陀螺仪的安装误差的基础上,设计了六位置法来标定陀螺仪二次项系数的标定方案。该方法抑制了线振动台的寄生转动、测试时产生的微小角振动以及陀螺仪的安装误差对标定精度的影响,能够提高液浮陀螺仪在线振动台上测试的精度。最后进行了相应的误差分析,验证了该方法能够准确的标定出陀螺仪的二次项误差模型系数,标定精度可达10~(-4)(°/h/g~2)数量级。  相似文献   

2.
原子力显微镜(AFM)悬臂梁探针的弹性常数在微纳米尺度力学测试中十分重要,其准确程度直接影响力学测量结果的可靠性,故需对其进行精确标定.因天平法的测量结果可溯源,本文在已有天平法的基础上,研制了一套新型标定系统.该系统将AFM测头与超精密电磁天平相结合.微悬臂梁在精密位移台的带动下接触天平并产生弯曲,接触力由天平测得,微悬臂梁的弯曲量由光杠杆检测,并通过反馈系统进行精确控制,最后根据胡克定律计算出弹性常数.利用本系统对4种不同型号商用微悬臂梁探针的法向弹性常数进行了标定,标定结果表明本系统具有良好的测量重复性.通过进行不确定度分析,得到测量结果的相对标准不确定度优于2%.  相似文献   

3.
分析了仪器柔度及其标定精度对压人法测试微机电系统(MEMS)材料弹性模量和硬度结果的误差影响规律,并得出了系统误差公式。通过溯源分析,认为柔度标定误差是压人法测试的3个基本源误差之一。利用间接法对微压人测试仪柔度进行了标定和校准,校准后得到的单晶硅(100)弹性模量和硬度测试值分别为151.5GPa和12.8GPa,与文献值符合较好,而未校准直接得到的测试值明显偏低。理论分析和实验结果均表明:仪器柔度的准确标定和位移校准是获得压人法可靠测试结果的必须步骤。  相似文献   

4.
杠杆百分表产生示值误差的原因主要有以下几种:杠杆机构误差、杠杆传动比误差、齿形变形、齿轮偏心、表盘偏心和齿轮周节累积误差等。杠杆百分表采用正弦杠杆机构,所引起的示值误差与测杆长度和摆角的三次方成正比。此误差是不可避免的,但数值很小,本文不作讨论。一、杠杆传动比误差的调修杠杆传动比K等于杠杆传动机构中杠杆长臂L。与短臂L;之比,即K二LyL。杠杆长臂为杠杆齿轮4的节圆半径,短臂是球形测头1的中心至枢轴3的轴线的距离(图1)。杠杆传动比误差造成的示值误差是线性误差(图到。当示值误差为正误差时(曲线1),应将…  相似文献   

5.
设计了一种基于激光准直原理的运动平台激光五自由度运动误差测量系统,该系统基于双平行光束的准直原理对水平直线度、垂直直线度、偏摆角、俯仰角和滚转角误差进行同步测量.进行了系统直线度、偏摆角和俯仰角误差测量核心器件参数的自标定,针对双光束难以调平影响滚转角误差测量准确度的问题,利用水平仪对滚转角误差进行补偿修正.对整套系统...  相似文献   

6.
当测角仪器的度盘刻划中心与轴系转动中心不同心时,会产生由于偏心而造成的示值误差。假定图1中的0为度盘刻划中心,0′为轴系的转动中心,仪器的偏心e所产生的示值  相似文献   

7.
光学计管的示值误差是由多方面的原因造成的。如机械杠杆短臂长度的改变、分划板刻划的误差以及量杆间隙所引起的误差等,因素很多,但主要的还是杠杆短臂的变动。仪器在使用中,量杆受到碰撞,或受到其它震动,都可以导致杠杆短臂a的变动。由光管原理图  相似文献   

8.
设计并制作了一种适用于原位纳米力学测试的原子力显微镜(AFM)测头.测头由光学检测系统和Z向压电陶瓷微位移机构组成.其中光学检测系统采用光杠杆与显微镜同轴光路检测探针形变,压电位移机构内置电容传感器可实现探针进给量的闭环控制.标定实验表明该测头闭环位移分辨力优于10 nm,在标定范围内具有很好的线性.利用该测头对某型微悬臂梁法向弹性常数进行了测量,测得值与采用具有溯源性的标定方法所得结果一致.  相似文献   

9.
针对半导体器件微结构侧壁关键尺寸检测需求,设计了一套三维原子力显微镜(3D-AFM)系统.该系统采用针尖末梢为喇叭口形的悬臂梁探针,以扭转谐振模式实现横向轻敲扫描.介绍了该3D-AFM系统的结构组成和工作原理,对系统的横向检测灵敏度进行了标定,获得了喇叭口针尖与样品侧壁横向接近过程中探针扭转振幅的变化曲线.利用该系统对栅格标样侧壁局部形貌进行了线扫描和面扫描,所得轮廓具有较好的重复性,且测量所得形貌特征与常规轻敲模式扫描结果一致,表明本文所述3D-AFM系统及工作模式能够用于微结构侧壁形貌的检测.  相似文献   

10.
原子力显微镜中微悬臂梁/探针横向力的标定   总被引:1,自引:0,他引:1  
利用微加工制造的微悬臂梁/探针尖已经广泛应用在微观表面性质测试和微纳米尺度加工等领域,成为微纳米研究领域中不可缺少的重要工具.为了能够定量研究原子力显微镜中探针与表面的相互作用力,需要对微悬臂梁/探针的力学性能进行表征.本文简要地论述了原子力显微镜中微悬臂梁的形变光反射原理和探针与表面的接触刚度理论.阐明了微悬臂梁横向力标定的重要性.综述了目前几种微悬臂梁/探针横向力的标定方法、简单的推倒过程和特点、  相似文献   

11.
When indented or scratched, ceramics and glasses often exhibit distinct transition(s) in behavior as a function of the load on the abrasive or depth of its penetration. This behavior has important practical consequences in both material fabrication and wear. For example, so-called ductile mode grinding is dependent on reducing the depth of cut below a critical value so that a relatively damage free and smooth surface is produced. Transitions in behavior have been extensively studied using indentation and scratching on polished surfaces. However, in most practical wear, grinding, and polishing applications, scratching actually occurs on surfaces with existing damage.In this study the behavior of three different optical glasses during repeated low-load scratching with a Berkovich diamond indenter is reported. A distinct transition point, corresponding to a change from ductile grooving to chipping along the scratch track, was observed as a function of the number of repeated passes (scratches). The critical number of passes was dependent on both the applied load and the material. Several different methods for identifying the transition point were studied and found to give consistent results.  相似文献   

12.
基于原子力显微镜(AFM)探针的纳米机械刻蚀技术以其成本低、分辨率高的优势被广泛应用于各种纳米元器件的制造中.为了得到最优的光栅结构,首先通过单次刻蚀实验定量分析了刻蚀方向、加载力和刻蚀速率等3个主要加工参数对所得纳米沟槽形貌和尺寸的影响,给出了普通氮化硅探针对聚碳酸酯(PC)的加工特性及加工效率.然后通过改变沟槽间距(100~500 nm)得到了不同周期的纳米光栅结构,并确定了这种探针与样品的组合对间距的要求及最佳加工参数:沿垂直于微悬臂长轴向右刻蚀,加载力2.3μN,刻蚀速率2.6μm/s.最后利用该技术对实验室已有原子光刻技术所得周期为213 nm的一维Cr原子光栅结构进行了复制加工,得到了均匀的213 nm一维光栅,证明这种基于AFM探针的纳米机械刻蚀技术可被广泛应用于纳米加工.  相似文献   

13.
《Journal of Modern Optics》2013,60(11):1233-1241
In many applications such as three-dimensional (3-D) data acquisition, the scanning of 3-D objects or 3-D display, it is necessary to understand how an imaging system can be used to obtain information on the structure of an object in the direction perpendicular to the image plane, i.e. depth information. In certain cases the formation of a 3-D image can be described by a theory based on optical transfer functions (OTF): the image intensity distribution is given by the 3-D convolution of the object and a 3-D point spread function (PSF); equivalently, in 3-D Fourier space the image spectrum is the product of the object spectrum and a 3-D OTF. This paper investigates the 3-D PSFs and OTFs that are associated with different pupil functions of the imaging system.  相似文献   

14.
吴海勇  黄辉 《声学技术》2017,36(2):99-103
试验研究了单颗金刚石磨粒以不同切深划擦无氧铜的声发射信号特征,对不同切深下的声发射信号进行平稳化,确定合适的时间序列模型阶次和模型识别,建立了金刚石划擦无氧铜的声发射时间序列自回归(Auto Regressive,AR)模型。研究表明:随着切深的增加,声发射特征参数和最大振幅随之增大,AR模型的各特征向量与切深之间具有较好的线性关系,合理的AR模型可较好地表征单颗金刚石磨粒划擦无氧铜的声发射信号特征,并可以实时分析金刚石磨粒的划擦深度。  相似文献   

15.
Shimamoto A  Tanaka K 《Applied optics》1996,35(34):6767-6774
The performance of a multifiber optical lever was geometrically analyzed by extending the Cook and Hamm model [Appl. Opt. 34, 5854-5860 (1995)] for a basic seven-fiber optical lever. The generalized relationships between sensitivity and the displacement detection limit to the fiber core radius, illumination irradiance, and coupling angle were obtained by analyses of three various types of light source, i.e., a parallel beam light source, an infinite plane light source, and a point light source. The analysis of the point light source was confirmed by a measurement that used the light source of a light-emitting diode. The sensitivity of the fiber-optic lever is inversely proportional to the fiber core radius, whereas the receiving light power is proportional to the number of illuminating and receiving fibers. Thus, the bundling of the finer fiber with the larger number of illuminating and receiving fibers is more effective for improving sensitivity and the displacement detection limit.  相似文献   

16.
The design of a desired optical transfer function (OTF) is a common problem that has many possible applications. A well-known application for OTF design is beam shaping for incoherent illumination. However, other applications such as optical signal processing can also be addressed with this system. We design and realize an optimal phase only filter that, when attached to the imaging lens, enables an optimization (based on the minimal mean square error criterion) to a desired OTF. By combining several OTF design goal requirements, each represents a different plane along the beam propagation direction, an imaging system with an increased depth of focus is obtained. Because a phase only filter is used, high energetic efficiency is achieved.  相似文献   

17.
There is a compelling need to develop systems capable of processing blood and other particle streams for detection of pathogens that are sensitive, selective, automated, and cost/size effective. Our research seeks to develop laser-based separations that do not rely on prior knowledge, antibodies, or fluorescent molecules for pathogen detection. Rather, we aim to harness inherent differences in optical pressure, which arise from variations in particle size, shape, refractive index, or morphology, as a means of separating and characterizing particles. Our method for measuring optical pressure involves focusing a laser into a fluid flowing opposite to the direction of laser propagation. As microscopic particles in the flow path encounter the beam, they are trapped axially along the beam and are pushed upstream from the laser focal point to rest at a point where the optical and fluid forces on the particle balance. On the basis of the flow rate at which this balance occurs, the optical pressure felt by the particle can be calculated. As a first step in the development of a label-free device for processing blood, a system has been developed to measure optical pressure differences between the components of human blood, including erythrocytes, monocytes, granulocytes, and lymphocytes. Force differentials have been measured between various components, indicating the potential for laser-based separation of blood components based upon differences in optical pressure. Potential future applications include the early detection of blood-borne pathogens for the prevention of sepsis and other diseases as well as the detection of biological threat agents.  相似文献   

18.
《Composites》1990,21(1):71-80
Recent developments towards the development of a fibre optic damage detection system for composite materials are described. Results of experiments designed to measure the influence of optical fibre orientation and depth on the sensitivity of the system are reported and optimal configurations have been determined for both. A surface treatment for controlling the damage sensitivity of the optical fibres to the point where they can detect barely visible damage is described. A study into the failure mechanisms of embedded optical fibres is also reported. The technique has been demonstrated to be capable of detecting both impact and quasi-statically induced damage and can be used to map the growth of a region of damage with increasing load.  相似文献   

19.
Detection techniques currently used in scanning force microscopy impose limitations on the geometrical dimensions of the probes and, as a consequence, on their force sensitivity and temporal response. A new technique, based on scattered evanescent electromagnetic waves (SEW), is presented here that can detect the displacement of the extreme end of a vertically mounted cantilever. The resolution of this method is tested using different cantilever sizes and a theoretical model is developed to maximize the detection sensitivity. The applications presented here clearly show that the SEW detection system enables the use of force sensors with sub-micron size, opening new possibilities in the investigation of biomolecular systems and high speed imaging. Two types of cantilevers were successfully tested: a high force sensitivity lever with a spring constant of 0.17?pN?nm(-1) and a resonant frequency of 32?kHz; and a high speed lever with a spring constant of 50?pN?nm(-1) and a resonant frequency of 1.8?MHz. Both these force sensors were fabricated by modifying commercial microcantilevers in a focused ion beam system. It is important to emphasize that these modified cantilevers could not be detected by the conventional optical detection system used in commercial atomic force microscopes.  相似文献   

20.
We report the results of studies of the torsion effect on the optical birefringence in LiNbO(3) crystals. We found that the twisting of those crystals causes a birefringence distribution revealing nontrivial peculiarities. In particular, they have a special point at the center of the cross section perpendicular to the torsion axis where the zero birefringence value occurs. It has also been ascertained that the surface of the spatial birefringence distribution has a conical shape, with the cone axis coinciding with the torsion axis. We revealed that an optical vortex, with a topological charge equal to unity, appears under the torsion of LiNbO(3) crystals. It has been shown that, in contrast to the q plate, both the efficiency of spin-orbital coupling and the orbital momentum of the emergent light can be operated by the torque moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号