首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-powered heating equipment has the potential for high overall energy efficiency and can provide an effective means of providing on site power and energy security in residential homes. It is also attractive for remote communities where connection to the grid is not cost effective. Self-powered residential heating systems operate entirely on fuel combustion and do not need externally generated electricity. Excess power can be provided for other electrical loads. To realize this concept, one must develop a reliable and low maintenance means of generating electricity and integrate it into fuel-fired heating equipment. In the present work, a self-powered residential heating system was developed using thermoelectric power generation technology. A thermoelectric module with a power generation capacity of 550 W was integrated into a fuel-fired furnace. The thermoelectric module has a radial configuration that fits well with the heating equipment. The electricity generated is adequate to power all electrical components for a residential central heating system. The performance of the thermoelectric module was examined under various operating conditions. The effects of heat transfer conditions were studied in order to maximize electric power output. A mathematical model was established and used to look into the influence of heat transfer coefficients and other parameters on electric power output and efficiency.  相似文献   

2.
The effective thermoelectric parameters of a single stage cooler were measured as a function of temperature and compared with those of the n and p type materials from which the thermoelements were prepared. The performance of the cooler was calculated by a computerized iterative process using measured parameters and compared with experimentally determined characteristics. The influence of electrical contact resistance on the performance of the cooler is not negligible.  相似文献   

3.
Thermoelectric application for power generation does not appear to be appealing due to the low conversion efficiency given by the current commercially available thermoelectric module. This drawback inhibits its wide application because of the overall low thermal efficiency delivered by typical thermoelectric applications. This paper presents an innovative domestic thermoelectric cogeneration system (TCS) which overcomes this barrier by using available heat sources in domestic environment to generate electricity and produce preheated water for home use. This system design integrates the thermoelectric cogeneration to the existing domestic boiler using a thermal cycle and enables the system to utilise the unconverted heat, which represents over 95% of the total absorbed heat, to preheat feed water for domestic boiler. The experimental study, based on a model scale prototype which consists of oriented designs of heat exchangers and system construction configurations. An introduction to the design and performance of heat exchangers has been given. A theoretical modelling for analysing the system performance has been established for a good understanding of the system performance at both the practical and theoretical level. Insight has also been shed onto the measurements of the parameters that characterise the system performance under steady heat input. Finally, the system performance including electric performance, thermal energy performance, hydraulic performance and dynamic thermal response are introduced.  相似文献   

4.
The micro-thermoelectric-generator based on catalytic combustion of hydrogen and oxygen was designed. With the application of general finite reaction rate model in CFD software of FLUENT, the effect of inlet parameters on the highest temperature difference between the hot and cold plate of the generator was studied. Results showed that, the temperature in the heating and cooling channel of the micro-thermoelectric-generator was uniform; with the increasing of inlet reactant temperature, the highest temperature difference increased, but the total efficiency of the generator decreased. Results can be used to the further design and optimization of micro-thermoelectric-generator based on hydrogen catalytic combustion.  相似文献   

5.
We present an improved theoretical model of a thermoelectric device which has been developed for geometrical optimization of the thermoelectric element legs and prediction of the performance of an optimum device in power generation mode. In contrast to the currently available methods, this model takes into account the effect of all the parameters contributing to the heat transfer process associated with the thermoelectric device.The model is used for a comparative evaluation of four thermoelectric modules. One of these is commercially available and the others are assumed to have an optimum geometry but with different design parameters (thermal and electrical contact layer properties).Results from the model are compared with experimental data of the commercial thermoelectric module in power generation mode with temperature gradient consistent with those achievable from a solar concentrator system. These show that it is important to have devices optimized specifically for generation, and to improve the contact layer of the thermoelements accordingly.  相似文献   

6.
Thermoelectric modules are currently used both in Peltier cooling and in Seebeck mode for electricity generation. The developments experienced in both cases depend essentially on two factors: the thermoelectric properties of the materials that form these elements (mainly semiconductors), and the external structure of the semiconductors. Figure of Merit Z is currently the best way of measuring the efficiency of semiconductors, as it relates to the intrinsic parameters of the semiconductor: Seebeck coefficient, thermal resistance, and thermal conductivity. When it comes to evaluating the complete structure, the Coefficient of Performance (COP) is used, relating the electrical power to the thermal power of the module. This paper develops a Thermoelectric Generator (TEG) structure which allows minimising the response time of the thermoelectric device, obtaining short working cycles and, therefore, a higher working frequency.  相似文献   

7.
分散式风力-太阳能混合发电系统的研制   总被引:5,自引:0,他引:5  
对国内外中小型风力发电机组及太阳能发电装置进行了综合分析,采用机电一体化设计和滑模变结构控制技术研制开发实用化的分散式风力-太阳能混合发电系统,统一交流电源品质调节装置对混合发电系统的电能指标进行全局优化,即利用统一的滑膜变结构控制实现发电系统的快速电压调节,谐波抑制,功率因数补偿和非线性负荷的三相平衡,为边远地区及分散用户提供稳定的清洁能源,混合发电系统既可独立运行,也可多系统并行运行,必要时还可并网运行。  相似文献   

8.
Heat transfer at a finite rate and electrical resistive losses are necessarily irreversible processes and unavoidable in a thermoelectric device. It is shown that the internal and exernal irreversibilities in a thermoelectric refrigerator may be characterized by a single parameter, named the device-design parameter. The presence of this parameter in the equations for the refrigeration effect and the maximum input power, shows that a real refrigerator has a smaller cooling capacity and needs more input power than an ideal refrigerator.  相似文献   

9.
Rapid development of portable electronics promotes the R&D of micro/miniature power sources with high energy density. The high mass energy density and zero emission characteristic of hydrogen show a huge potential to develop powerful portable hydrogen-based power sources. A miniature hydrogen catalytic combustion powered thermoelectric generator (CCP-TEG) is designed and tested in detail. An outstanding catalytic core is prepared with a newly proposed method on the basis of combining H2PtCl6 solution and foamed transition metal. Such catalytic core is demonstrated to provide high combustion temperature, complete combustion, and sufficient heat flux for power generation. Several parameters including input power, equivalent ratio, cooling mode, and load resistance are investigated to clarify their influences on the combustion temperature, electric power, and various efficiencies (combustion, heat collection, TE, and overall efficiencies) of the hydrogen CCP-TEG. The developed hydrogen CCP-TEG is able to generate an electric power of 20.7 W with an overall efficiency of 2.04%, filling the research gap of generating large electric power (>10 W) with sufficiently high overall efficiency (>2%) in the research field of hydrogen CCP-TEG. The generated electric power and overall efficiency are much higher than those in previous hydrogen CCP-TEGs. The prepared catalytic core remains excellent functionality after running for 30 h, and the combustion temperature is as high as 918 K, which ensures the sufficiently high temperature difference for powerful power generation. This study is conducted to illustrate a concrete method on developing a powerful hydrogen CCP-TEG, and to identify further research directions.  相似文献   

10.
This article describes a battery charger, which is powered by thermoelectric (TE) power modules. This system uses TE devices that directly convert heat energy to electricity to charge a battery. The characteristics of the TE module were tested at different temperatures. A SEPIC dc–dc converter was applied and controlled by a microcontroller with the maximum power point tracking (MPPT) feature. The proposed system has a maximum charging power of 7.99 W: that is better than direct charging by approximately 15%. The objectives are to study the principle of TE power generation and to design and develop a TE battery charger that uses waste heat or another heat source as the direct input power.  相似文献   

11.
This article proposes a concept of “effective Seebeck coefficient”, which discusses the inconsistency between the theoretical Seebeck coefficient and the measured one. The inconsistency can be explained via contact effect and thermal resistor network. Two different clamping forces are applied to the TEG module to observe the contact effect. Throughout the experiments, the electric resistance seems insensitive to the clamping force; somehow the thermal contact effect dominates the TEG module performance. In addition, a thermal resistor network, which is used to calculate the exact temperature difference traverse the TE ingot, has been constructed. After applying a suitable clamping pressure and modifying the actual ΔT with thermal resistor network, the “effective Seebeck coefficient” has been proposed. Notably, this proposed value is very helpful for better understanding characteristics of the behavior of the TEG module operating in the actual conditions we provided, and it can be used to predict the performance of the TEG module under any other condition.  相似文献   

12.
This paper deals with the control of a H2 production system supplied by wind power and assisted by the grid. The system architecture consists of a pitch-controlled wind turbine coupled through a diode rectifier to an alkaline electrolyzer, which in turn is connected to the electric grid through a fully-controlled bidirectional electronic converter. A control strategy for the electronic converter is proposed to regulate the electrolyzer current at its rated value. Thus, H2 production efficiency is optimized despite wind power and temperature variability. Control design is based on sliding mode techniques, which are particularly appropriate to control fast switching devices and exhibit strong robustness properties. Additionally, in high wind speeds, a pitch control loop is activated to limit the wind power capture below admissible values.  相似文献   

13.
A prototype hydrogen detection system using the micro-thermoelectric hydrogen sensor (micro-THS) was developed for the safety of hydrogen infrastructure systems, such as hydrogen stations. We have designed a detection part with a pressure proof enclosure adoptable for the international standard of Exd II CT3, and carried out an explosion strength test, explosion and fire hazard tests, and an impact test. The hydrogen sensing performance of the detection part of this prototype system showed a good linear relationship between the sensing signal and hydrogen concentrations in air, for a wide range of hydrogen concentrations from 10 ppm to 40,000 ppm (4 vol.%). This prototype detection system was installed in the outdoor field of the hydrogen station and the response for H2 gas in air of 100 ppm, 1000 ppm, and 10000 ppm was tested monthly for 1 year.  相似文献   

14.
This article investigates the thermal performance of a thermoelectric water-cooling device for electronic equipment. The influences of heat load and the thermoelectric cooler's current on the cooling performance of the thermoelectric device are experimentally and theoretically determined. This study develops a novel analytical model of thermal analogy network to predict the thermal capability of the thermoelectric device. The model's prediction agrees well with the experimental data. The experimental result shows that when heat load increases from 20 W to 100 W, the lowest overall thermal indicator increases from − 0.75 KW− 1 to 0.62 KW− 1 at the optimal electric current of 7 A. Besides, this study verifies that the thermal performance of the conventional water-cooling device can be effectively enhanced by integrating it with the thermoelectric cooler when the heat load is below 57 W.  相似文献   

15.
Using an externally and internally irreversible heat engine model, the maximum power and thermal efficiency at maximum power output have been determined for a thermoelectric generator. The irreversibilities can be characterized by a single parameter named the device-design parameter. The efficiency and power decrease with an increase of the device-design parameter which appears in the equations for maximum power and efficiency.  相似文献   

16.
The search and selection for a suitable thermoelectric cooler (TEC) to optimize a cooling system design can be a tedious task as there are many product ranges from several TEC manufacturers. Although the manufacturers do provide proprietary manuals or electronic search facilities for their products, the process is still cumbersome as these facilities are incompatible. The electronic facilities often have different user interfaces and functionalities, while the manual facilities have different presentations of the performance characteristics. This paper presents a methodology to assist the designer to size and select the TECs from different manufacturers. The approach will allow designers to find quickly and to evaluate the devices from different TEC manufacturers. Based on the approach, the article introduces a new operational framework for an Internet based thermoelectric cooling system design process that would promote the interaction and collaboration between the designers and TEC manufacturers. It is hoped that this work would be useful for the advancement of future tools to assist designers to develop, analyze and optimize thermoelectric cooling system design in minimal time using the latest TECs available on the market.  相似文献   

17.
This work presents the experimental development of the first two prototypes of thermoelectric generators intended for initial electrification of rural isolated homes. The microcontroller system designed for these devices is oriented to develop a “plug and play” generator that is able to work on firewood home stoves without specialized supervision.  相似文献   

18.
A novel combined thermoelectric power generation and water desalination system is described with a system schematic. The proposed system utilises low grade thermal energy to heat thermoelectric generators for power generation and water desalination. A theoretical analysis presents the governing equations to estimate the systems performance characteristics combined with experimental validation. Experimental set-up consists of an electric heat source, thermoelectric modules, heat pipes, a heat sink and an evaporator vessel. Four heat pipes are embedded in a heat spreader block to passively cool the bottom side of the thermoelectric cells. The condenser of these four heat pipes is immersed in a pool of saline water stored in an evaporation vessel which is maintained at sub-atmospheric pressure. The liquid to vapour phase change cooling method achieve low saturation temperature and offers a high heat transfer coefficient for the cooling of the thermoelectric generators. At the same time this method utilises the low temperature heat extracted from the cold side of the thermoelectric generator for water desalination. It was observed that at low saturation temperatures greater heat flux could be supplied to the thermoelectric generators with less heat losses to the atmosphere.  相似文献   

19.
In this paper, a novel hybrid maximum power point tracking (MPPT) method is proposed and investigated. The proposed MPPT technique combines the simplicity of perturb and observe (P&O) method and the fast tracking ability of open circuit voltage (OCV) method. The advantages of the proposed MPPT approach include fast tracking speed, no additional circuit required and no temporary power loss. To validate the feasibility of the proposed MPPT technique, an 1.2 kW thermoelectric generation system for industrial waste heat recovery is also constructed, experimental results show that comparing with conventional P&O technique, the proposed method can improve the tracking speed for 42.9% and 86.2% when temperature differences are ΔT = 60 °C and ΔT = 180 °C, respectively. Moreover, the energy loss can be improved by 24.0% and 87.0% when temperature differences are ΔT = 60 °C and ΔT = 180 °C, respectively.  相似文献   

20.
In this paper, a grid-connected Doubly Fed Induction Generator controlled by a Sliding Mode Controller (SMC) is used to maximize the Wind Energy Conversion System (WECS) output power. A SMC is implemented using a PID controller that is tuned using a new algorithm based on hybrid Differential Evolution with a Linearized Biogeography-Based Optimization (LBBO-DE). Biogeography-Based Optimization (BBO) is an evolutionary optimization algorithm based on a mathematical model of organism distribution. BBO permits a recombination of the solutions features by migration. A new migration model based on the sigmoid function is proposed. An analysis of the LBBO-DE is conducted using six different models, including the sigmoid model. Their performance were tested with 23 benchmark functions. The comparison reveals that the sigmoid model has the best performance. Therefore, the LBBO-DE with a sigmoid model is used to optimize the controller parameters to maximize the WECS output power. The LBBO-DE with the sigmoid model is compared with the Tyreus-Luyben tuning method, Genetic Algorithm (GA) and Linearized BBO (LBBO). The results showed that the LBBO-DE has the best performance. The proposed algorithm is verified using an experimental setup for the maximization of the generated power from the WECS and reducing power loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号