首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
燃烧合成法制备CaB6的研究   总被引:1,自引:0,他引:1  
以CaO、B2O3、Mg粉为原料燃烧合成制备了CaB6粉末.考察了不同反应体系的差热曲线,采用XRD、SEM以及粒度分析技术对燃烧产物、浸出产物进行了表征.结果表明:Mg-B2O3-CaO反应体系872℃附近放热峰的表观活化能E=15.71kJ·mol-1,反应级数n=1.1,反应的表观活化能很小,说明合成CaB6的反应容易发生.燃烧产物由MgO、CaB6以及少量的Mg3B2O6和Ca3B2O6等组成,在空气中进行燃烧合成反应并不生成氮化物;燃烧产物经硫酸浸出处理后CaB6纯度达92.5%;随着制样压力的增大,CaB6粒度逐渐变小.  相似文献   

2.
以TiSi2为反应原料, SiC 作稀释剂, 利用自蔓延高温合成(SHS) 方法合成Si3N42SiC2TiN 复相陶瓷。计算了氮气压力对毛坯反应物理论转化率的影响, 并在50 、100 和150 MPa 三种氮气压力下进行了燃烧合成。结果表明, 孔隙率为50 vol %的压坯在三种条件下反应都比较完全, 反应物转化率随氮气压力增加而提高。而孔隙率为40 vol %的压坯在较低氮气压力下燃烧反应变得不完全, 产物中残留大片Si 。当压力为150 MPa 时产物中未出现单质Si 。说明氮气压力增大有利于氮气向反应前沿的渗入, 进而提高反应物的转化率。   相似文献   

3.
以3TiO2+3C+(4+x)Al反应体系为对象, 直接燃烧合成致密的TiC-Al2O3-Al复合材料。着重研究了电场对该体系燃烧合成过程的影响。结果表明: 外加电场的焦耳热效应可提高体系的绝热燃烧温度, 从而突破燃烧合成反应的热力学限制; 电场可改变体系的燃烧合成反应的模式; 随着电场强度的增加, 自蔓延燃烧温度和速度均提高, 而合成材料组织中Al2O3和TiC晶粒尺寸逐渐减小; 当体系中过余Al量x为14mol、 外加电场强度E为25V/cm时, 可直接燃烧合成相对致密性为92.5%的TiC-Al2O3-Al复合材料, 且合成的Al2O3和TiC晶粒尺寸细小(0.2~1.0μm), 在金属Al中分布均匀。   相似文献   

4.
以硝酸锆和硝酸稀土为原料,甘氨酸水溶液和无机盐作为溶剂和分散剂,通过盐助甘氨酸自蔓延燃烧法(Salt-assistant glycine combustion method,SGCM)得到的前驱体在700℃以下热处理,合成了系列Ln2Zr2O7纳米晶。探讨了最佳反应条件,研究了反应历程,讨论了惰性盐助剂在反应过程中的作用,比较了使用盐助剂与否对产物的分散性差别等。结果表明,在盐助甘氨酸自蔓延燃烧法合成中通过改变nGly/nNO3-的比率,调节盐助剂量nSalt/nM来对反应温度进行控制,得到的产物的结晶度高,团聚少,粒子更均匀,尺寸在20nm左右,晶体形貌完整,光催化活性强;Ln2Zr2O7的光催化主要源于稀土离子;稀土离子的光催化与4f电子结构的相关性,和稀土离子磁矩与4f电子结构的相关性是同源的。  相似文献   

5.
添加TiC和Ti3AlC2对燃烧合成Ti3AlC2粉体的影响   总被引:1,自引:0,他引:1  
Ti、Al、C和TiC组成的Ti:Al:C=3:1.1:1.8(摩尔比)体系的燃烧合成实验结果表明,当在体系中未加入TiC时,得到的主要是TiC,但加入TiC后燃烧合成产物主要是Ti3AlC2,且Ti3AlC2量随TiC加入量的增加而增加,随燃烧反应体系温度的降低而增加;加入晶种Ti3AlC2有利于合成Ti3AlC2相物质。  相似文献   

6.
溶液燃烧合成法制备纳米金属氧化物的研究进展   总被引:1,自引:1,他引:0  
简要介绍了纳米金属氧化物的一些应用;综述了近年来纳米金属氧化物的制备方法———溶液燃烧合成法;其中着重评述了近年来改进的溶液燃烧制备方法:自蔓延溶胶-凝胶燃烧合成法、浸渍在惰性支撑物中的燃烧合成法、浸渍在活性支撑物中的燃烧合成法、盐助溶液燃烧合成法、微波助溶液燃烧合成法、乳液燃烧合成法和纤维素辅助溶液燃烧合成法;并展望了该领域今后的研究方向。  相似文献   

7.
研究了B2O3-Al-C 体系的燃烧规律, 利用波速方程确定了B2O3-Al-C 体系的反应激活能, 并由此建立了该体系燃烧模式转化的SHS 图。试验中还发现, 体系中出现的不稳定燃烧实际为螺旋燃烧模式。由此, 通过计算机数值模拟不同参数下出现的典型螺旋燃烧的温度场, 并结合实验结果对螺旋燃烧进行了解释。   相似文献   

8.
洪晓东  王旭东  王铀  梁伟 《材料导报》2012,26(22):64-66,75
采用原位及离位傅里叶变换红外光谱(FTIR)法研究了固化剂为4,4′-二氨基二苯砜(DDS)的环氧树脂(E51)体系的固化动力学。结果表明,固化反应开始时,环氧基转化率在较短时间内达到较高水平;随时间的延长,环氧基转化率逐渐变慢。根据动力学方程求得反应级数为1.999,得出该反应是二级反应。比较原位法与离位法固化曲线得出,原位法在时间轴上是准确的,离位法在温度轴上是准确的。依据求得的反应活化能和反应常数确立了该固化体系的固化时间、温度及环氧基转化率的关系方程,得出该体系的最佳固化条件为170℃、7h。  相似文献   

9.
综合利用溶胶凝胶及燃烧合成的优点制备了质子导体SrCe0.95Yb0.05O3-α粉体,发现柠檬酸的添加量是金属离子的2倍的情况下所制干凝胶燃烧时温度最高,合成产物最好;在燃烧合成中,柠檬酸作还原剂,而硝酸根离子作氧化剂;氧气不是燃烧反应的必要条件,但氧气可以加剧反应进行.XRD结果表明,1000℃即形成斜方钙钛矿结构,较高温固相反应合成温度降低了约400℃.  相似文献   

10.
用柠檬酸和乙二醇做络合剂和燃料,硝酸盐做氧化剂,用氨水调节溶胶pH值,通过溶胶凝胶-自燃烧法一步合成了可用于固体氧化物燃料电池(SOFC)的新型固体电解质La9.33Si6O26.用XRD、TEM等分析方法对合成粉体进行了物相测定与形貌观察,并初步考察了粉体的烧结性能.结果表明:通过工艺参数的有效设计,溶胶-凝胶和自燃烧过程可以在短时间内达到合成所需要的高温,一步合成粒径约为150~300 nm的单相La9.33Si6O26超细粉体,其烧结温度比固相法制备的粉体的烧结温度约低200℃.  相似文献   

11.
Al-Ti-TiO2体系燃烧合成及其反应过程研究   总被引:9,自引:0,他引:9  
利用Al-Ti-TiO2体系放热反应,采用自蔓延高温合成工艺,原位合成了TiAl基体和Al2O3颗粒,成功制备出TiAl/Al2O3复合材料。结合差热分析,通过对不同温度下反应产物相组成分析,对Al-Ti-TiO2体系燃烧反应过程进行了初步研究。结果表明,铝热还原反应是一个分步过程,先期发生的Al-Ti,Ti-TiO2反应降低了Al-TiO2还原反应的起始温度。  相似文献   

12.
以Nb2O5和Ta2O5为前驱反应物,KOH为矿化剂,采用异丙醇和水为反应介质的混合溶剂热法,成功地合成了四方相、钙钛矿结构的KTa0.6Nb0.4O3陶瓷粉体.XRD、SEM、TEM以及FT-IR等研究结果表明:在混合溶剂热合成过程中,反应溶剂(水/异丙醇)、矿化剂KOH的摩尔浓度和反应温度是影响KTN粉体结构和形貌的关键因素.在KOH浓度1~2M,异丙醇:水=80:20、反应温度250℃,时间8h合成条件下,得到了晶粒形状呈规则的立方体,边长分布约为100~300nm的KTN陶瓷粉体.  相似文献   

13.
采用Friedman法求解了硼酚醛-环氧树脂体系的固化反应动力学参数及固化机理模型,预测了170℃硼酚醛-环氧树脂体系的等温固化曲线,确定了此体系的等温理论转化率与时间的关系,得到不同时间的理论转化率。并且采用170℃的电热鼓风干燥箱对此体系做等温固化试验,取不同固化时间的试样,用差示扫描量热仪测得树脂的实验转化率,并且与理论值进行比较。结果表明,硼酚醛-环氧树脂体系的固化反应模型属于An型,固化反应机制函数为[-ln(1-α)]1.39=1.80×10-4t,在低固化阶段,理论转化率与实验转化率相接近,但随着固化程度的增加,理论值明显高于试验值。  相似文献   

14.
体系成分对Fe-Cu-Ti-C体系电场原位合成的影响   总被引:1,自引:0,他引:1  
为了研究电场作用下成分对Fe-Cu-Ti-C体系燃烧合成的影响,采用Gleeble-3500D热模拟机,原位合成了Fe-Cu-TiC复合材料.实验前计算体系的绝热温度;实验后对终试样进行XRD物相分析,扫描电子显微镜观察其组织,排水法测终试样密度.热力学计算表明,Fe质量分数为65%~75%、Cu质量分数为15%~20%的Fe-Cu-Ti-C体系的绝热燃烧温度在1245~1542 K,但电场作用使试样在927.98~1056.23 K间发生燃烧合成反应,铜含量越大,体系点火温度升高,且点火延迟时间变长,反应终产物均为Fe、Cu和TiC,其中TiC颗粒的尺寸均小于0.5μm.试样致密化程度随着铁-铜基体含量的增加而提高.电场可促使不同成分的Fe-Cu-Ti-C体系发生燃烧合成反应.  相似文献   

15.
TiB/Ti复合材料自蔓延高温燃烧合成的研究   总被引:2,自引:0,他引:2  
采用自蔓延高温燃烧合成-准热等静压工艺(SHS/PHIP)制备了TiB-Ti体系复合材料,理论计算了该体系的绝热温度,测量了燃烧温度和燃烧速度。结果表明,绝热温度、燃烧温度和燃烧速度均随Ti含量的增加而降低。对合成产物的分析发现:反应产物主要由TiB和Ti两组组成,TiB相分布均匀,主要有棒状和块状两种形态,并且随Ti含量的增加,TiB尺寸减小;部分产物中还有少量TiB2相存在。合成产物具有高的致密度和硬度,其相对密度超过94%,硬度HRA>82。  相似文献   

16.
燃烧合成Ti3AlC2粉体的机理研究   总被引:6,自引:0,他引:6  
利用淬火实验并结合XRD、SEM研究了燃烧合成TiAlC2粉体的机理。实验结果表明,燃烧合成Ti3AlC2粉体的机理是溶解再析出机制。即先生成的TiC晶核得新溶解到Ti-Al熔体中,同时三元碳化物开始析出并发育成层状结构。反应可以分为三个阶段:A.预热阶段;B.初始反应阶段;C.溶解析出阶段。  相似文献   

17.
李有坤  邱克辉 《功能材料》2013,44(4):498-501,506
以硝酸锂、硝酸锰和柠檬酸为原料,采用溶胶-凝胶法制备成前驱体,将该前驱体在空气环境下燃烧得到的粉料在600~900℃焙烧一定时间得到尖晶石型晶体结构的LiMn2O4(空间群为Fd3m)。利用X射线衍射(XRD)、扫描电镜(SEM)、热重-差热分析(TG/DTA)对前驱体及合成的样品进行了测试分析和表征。研究了焙烧温度、时间以及锂锰摩尔比(n(Li)/n(Mn))R等对合成样品的相组成、晶体结构和微观形貌等的影响。合成高纯尖晶石型LiMn2O4的优化条件为焙烧温度800℃,焙烧时间10h,R=1.1/2。  相似文献   

18.
采用溶胶低温燃烧法制备了单一组成的La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3-δ(LSFCM)超细钙钛矿陶瓷粉体。用XRD,SEM以及TA等方法对粉体的物相、形貌、粒度以及导电性能等进行了表征。考察了LSFCM陶瓷粉体对甲烷部分氧化(POM)制备合成气的催化活性与稳定性。结果表明:溶胶燃烧粉末经800℃下煅烧4h可得到平均粒径小于35nm的立方钙钛矿结构LSFCM陶瓷粉体,相对密度为96.7%的LSFCM烧结体在空气气氛600℃温度下电导率达到26.27S·cm-1,在950℃、CH4/O2比为1.5~2.0时,甲烷转化率及一氧化碳与氢气选择性均达到90.0%以上;反应43h后虽产生少量积炭,但仍能保持钙钛矿结构,表明LSFCM粉体对甲烷部分氧化制合成气反应具有良好的催化活性和稳定性。  相似文献   

19.
氢化燃烧合成法制备镁基储氢合金Mg2NiH4   总被引:2,自引:0,他引:2  
采用自行设计制作的反应设备,研究了氢化燃烧合成法制备Mg2NiH4的工艺参数。主要探讨了合成反应动力学因素:压力、合成温度、氢化保温时间对产物纯度的影响。实验结果表明,在初始压力为1.5MPa下,合成条件分别为:合成温度808K,合成保温时间120min,氢化保温时间60min及合成温度850K,合成保温时间60min,氢化保温时间90min时均可制备出纯的Mg2NiH4。  相似文献   

20.
以3TiO2 3C (4 x)Al为反应体系,用电场激发燃烧合成技术并使用合成中形成的液态Al对产物的渗透作用,制备出致密度为92.5%的Al2O3-TiC-Al复合材料,采用燃烧波峰淬熄法研究了原位合成Al2O3-TiC-Al复合材料的结构形成机理.结果表明:电场提供的焦耳效应可提高体系的绝热燃烧温度,从而可突破该体系只能在x<10 mol下发生SHS反应的热力学限制;在Al2O3-TiC-Al复合材料动力学过程中,首先Al粉熔融,进而加速与TiO2的反应生成Al2O3;然后Al与TiO2反应还原出Ti并与C反应生成TiC;液态Al的渗透将Al2O3和TiC颗粒粘结起来,形成致密的复合材料组织.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号