首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The methods of homogenization and finite elements are employed to predict the effective elastic constants and stress-strain responses of a new type of lattice structure, the X-structure proposed by the authors in a companion paper. It is shown that in most cases the predictions by the equivalent homogenization theory agree well with the experimental and 3-dimensional finite element calculated results. The theoretical and numerical study supports the argument that the X-structure is superior to the pyramid lattice structure in terms of mechanical strength. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2006CB601202), the National Natural Science Foundation of China (Grant Nos. 10632060, 10825210), the National “111” Project of China (Grant No. B06024) and the National High-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA03Z519)  相似文献   

2.
A new type of ultra-lightweight metallic lattice structure (named as the X-type structure) is reported. This periodic structure was formed by two groups of staggered struts in the traditional pyramid structure, and fabricated by folding expanded metal sheet along rows of offset nodes and then brazing the folded structure (as the core) with top and bottom facesheets to form sandwich panels. The out-of-plane compressive and shear properties of the X-type lattice sandwich structure were investigated experimentally and compared to those of the sandwich having a pyramidal truss core. It is found that the formation of the 2-dimensional staggered nodes can effectively make the X-type structure more resistant to inelastic and plastic buckling under both compression and shear loading than the pyramidal lattice truss. Obtained results show that the compressive and shear peak strengths of the X-type lattice structure are about 30% higher than those of the pyramidal lattice truss having the same relative density. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2006CB601202), the National Natural Science Foundation of China (Grant Nos. 10632060,10825210), the National “111” Project of China (Grant No. B06024) and the National High-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA03Z519)  相似文献   

3.
The development of Hydro-Informatic Modelling System (HIMS) provides an integrated platform for hydrological simulation. To extend the application of HIMS, an ecohydrological modeling system named ecohydrological assessment tool (EcoHAT) has been developed. Integrating parameter-management tools, RS (remote sensing) inversion tools, module-design tools and GIS analysis tools, the EcoHAT provides an integrated tool to simulate ecohydrological processes on regional scale, which develops a new method on sustainable use of water. EcoHAT has been applied to several case studies, such as, the Yellow River Basin, the acid deposition area in Guizhou province and the riparian catchment of Guanting reservoir in Beijing. Results prove that EcoHAT can efficiently simulate and analysis the ecohydrological processes on regional scale and provide technical support to integrated water resources management on basin scale. Supported by the National Key Technology R&D Program in the 11th Five-year Plan of China (Grant No. 2006BAB06B07), the National Natural Science Foundation of China (Grant No. 40671123), the National Basic Research Program of China (“973” Project) (Grant Nos. 2005CB422207, G19990436), and the National Hi-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA12Z145)  相似文献   

4.
A new type counter electrode for dye-sensitized solar cells (DSCs) was proposed which consists of substrate, aluminum film and platinum film. The new type counter electrode can obviously improve the photoelectric conversion efficiency of DSCs from 3.46% to 7.07% under the standard AM1.5 irradiation condition. Advantages and shortcomings of this new type counter electrode in terms of electrical properties, optical properties and anti-corrosive properties were analyzed. As a result, some improvements were proposed. Supported by the Key Foundation for Fundamental Research of Tianjin Municipal Science & Technology Commission in China ( Grant No. 06YFJZJC01700) and the National Basic Research Program of China (“973“ Project) (Grant Nos. 2006CB20260, 2006CB202603)  相似文献   

5.
Multi-channel micro neural probe fabricated with SOI   总被引:1,自引:0,他引:1  
Silicon-on-insulator(SOI) substrate is widely used in micro-electro-mechanical systems(MEMS).With the buried oxide layer of SOI acting as an etching stop,silicon based micro neural probe can be fabri-cated with improved uniformity and manufacturability.A seven-record-site neural probe was formed by inductive-coupled plasma(ICP) dry etching of an SOI substrate.The thickness of the probe is 15 μm.The shaft of the probe has dimensions of 3 mm×100 μm×15 μm with typical area of the record site of 78.5 μm2.The im...  相似文献   

6.
The structural and optical properties of amorphous semiconductor mercury cadmium telluride (a-MCT) are obtained by the first principles calculations. The total pair distribution functions and the density of states show that the a-MCT has the semiconductor characteristic. The calculated results of dielectric function show that E 2 peak of the imaginary of dielectric function for the crystal mercury cadmium telluride abruptly disappears in the amorphous case due to the long-range disorders. And the imaginary of dielectric function of a-MCT shows a large broad peak, which is in agreement with the available results of other amorphous semiconductors. From the linear extrapolation of the curve ħωɛ 2(ω)1/2 versus ħω, it can be obtained that the optical energy gap of amorphous semiconductor Hg0.5Cd0.5Te is 0.51±0.05 eV. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2007CB613205), the National Natural Science Foundation of China (Grant Nos.10725418, 10734090, 60576068), the Key Fund of Shanghai Science and Technology Foundation (Grant No. 08JC1421100) and the Knowledge Innovation Program of the Chinese Academy of Sciences  相似文献   

7.
Numerical simulation and analysis of water flow over stepped spillways   总被引:1,自引:0,他引:1  
Numerical simulation of water flow over the stepped spillway is conducted using Mixture multiphase flow model. Different turbulence models are chosen to enclose the controlling equations. The turbulence models investigated are realizable k-ε model, SST k-ω model, v2-f model and LES model. The computational results by the four turbulence models are compared with experimental ones in the following aspects: mean velocity, the spanwise vorticity and the growth of the turbulent boundary layer thickness in the st...  相似文献   

8.
On the numerical simulation of active scalar, a new explicit algebraic expression on active scalar flux was derived based on Wikstr?m, Wallin and Johansson model (a WWJ model). Reynolds stress algebraic expressions were added by a term to account for the buoyancy effect. The new explicit Reynolds stress and active scalar flux model was then established. Governing equations of this model were solved by finite volume method with unstructured grids. The thermal shear stratified cylinder wake flow was computed by this new model. The computational results are in good agreement with laboratorial measurements. This work is the development on modeling of explicit algebraic Reynolds stress and scalar flux, and is also a further modification of the a WWJ model for complex situations such as a shear stratified flow. Supported by the National Nature Science Foundation of China (Grant Nos. 50679019, 50009001), the National Basic Research Program of China (“973” Project) (Grant No. 2008CB418202), the Project of “Six Talent Peak” of Jiangsu Province (08-C), Social Technology Development Foundation of Jiangsu Province (Grant No. BS2006095) and the “908” Special Foundation of Jiangsu Province (Grant No. JS-908-02-06)  相似文献   

9.
This paper firstly evaluated the impedance method and traveling waves method for fault location, and studied the robustness of fault location method based on impedance. Then it proposed an assembled fault location method for a transmission line based on single-terminal electrical quantities, in which the fault zone was firstly determined by impedance method with robustness then the accurate fault position was pinpointed by traveling waves method. EMTP (Electromagnetic Transient Program) simulations showed that the proposed method can overcome the drawbacks of impedance method and traveling waves method when either one is used alone, and improve both the accuracy and the reliability of fault location. Supported by the National Natural Science Foundation of China (Grant Nos. 50077011 and 50377019) and the National Basic Research Program of China (“973” Project) (Grant No. 2004CB217906)  相似文献   

10.
This paper presents a novel step kinematic calibration method for a 3 degree-of-freedom (DOF) planar parallel kinematic machine tool, based on the minimal linear combinations (MLCs) of error parameters. The method using mapping of linear combinations of parameters in error transfer multi-parameters coupling system changes the modeling, identification and error compensation of geometric parameters in the general kinematic calibration into those of linear combinations of parameters. By using the four theorems of the MLCs, the sets of the MLCs that are respectively related to the relative precision and absolute precision are determined. All simple and feasible measurement methods in practice are given, and identification analysis of the set of the MLCs for each measurement is carried out. According to the identification analysis results, a step calibration including step measurement, step identification and step error compensation is determined by taking into account both measurement costs and observability. The experiment shows that the proposed method has the following merits: (1) the parameter errors that cannot influence precision are completely avoided; (2) it reflects the mapping of linear combinations of parameters more accurately and enhances the precision of identification; and (3) the method is robust, efficient and effective, so that the errors in position and orientation are kept at the same order of the measurement noise. Due to these merits, the present method is attractive for the 3-DOF planar parallel kinematic machine tool and can be also applied to other parallel kinematic machine tools with weakly nonlinear kinematics. Supported by the “863” High-Tech Program of China (Grant Nos. 2006AA04Z204 and 2006AA04Z227), National Natural Science Foundation of China (Grant Nos. 50775118 and 50605041), the “973” Basic Research Project of China (Grant Nos. 2006CB705406 and 2007CB714000), and Tsinghua Basic Research Foundation (Grant No. JC200701)  相似文献   

11.
Based on the theories of surface physical chemistry, theoretical formulations for permeability and porosity are presented which include both stress effect and matrix shrinkage in a single equation. Then, a three-dimensional, dual porosity, nonequilibrium adsorption, pseudosteady state mathematical model for gas and water is established and solved by the fully implicit method and the block preconditioning orthomin algorithm. A history matching for the Qinshui Well TL003 is done. From the results, it is shown that the obvious enhancement of permeability occurs along with the passing time but the reservoir pressure of 15# coal seam cannot fulfill the critical adsorption pressure as a result of the water recharge of the aquifer. Hence, it is suggested to plug the 15# coal seam. Supported by the National High Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA06Z236) and the National Basic Research Program (“973” Project) (Grant No. 2002CB11708)  相似文献   

12.
In this paper, optimum positioning of cylindrical cutter for five-axis flank milling of non-developable ruled surface is addressed from the perspective of surface approximation. Based on the developed. interchangeability principle, global optimization of the five-axis tool path is modeled as approximation of the tool envelope surface to the data points on the design surface following the minimum zone criterion recommended by ANSI and ISO standards for tolerance evaluation. By using the signed point-to-surface distance function, tool path plannings for semi-finish and finish millings are formulated as two constrained optimization problems in a unified framework. Based on the second order Taylor approximation of the distance function, a sequential approximation algorithm along with a hierarchical algorithmic structure is developed for the optimization. Numerical examples are presented to confirm the validity of the proposed approach. Supported by the National Natural Science Foundation of China (Grant Nos. 50775147 and 50835004), the National Basic Research Program of China (“973” Project) (Grant No. 2005CB724103), and the Science & Technology Commission of Shanghai Municipality (Grant No. 07JC14028)  相似文献   

13.
This study aimed to investigate dynamic recrystallization (DRX) behavior during compression of magnesium alloy AZ31. Cylinder samples were cut from the extruded rod and hot rolled sheet AZ31 for compression test. The samples were compressed using a Gleeble 1500D at a temperature of 300℃ and a strain rate of 0.01 s-1. Grain orientations and misorientation angles across grain boundaries for the tested samples were obtained by using electron backscatter diffraction (EBSD) technique. The results showed that strong basal texture was observed after 50% compression (ε = 0.69) on both the extruded and hot rolled samples, which have different initial textures. It was observed that with increased strain, DRX grains gradually rotated to basal orientation, and grain boundaries with misorientation angle of near 30° was formed in the samples. At the strain of 0.69, a high fraction of high-angle (> 60°) bounda-ries was present in the extruded sample, whereas almost no high angle boundaries were observed in the hot rolled sheet sample.  相似文献   

14.
The mechanical oscillatory behaviors of multiwall carbon nanotube oscillators in gaseous environment are investigated using the molecular dynamics method. The effects of ambient gas and temperature on intertube frictional force and oscillation frequency are analyzed. It is found that the intertube frictional force increases with the ambient gas density and temperature. Higher gas density and higher temperature cause a more rapid decay in the oscillation amplitude and an increase of the oscillation frequency. Compared to the vacuum environmental condition, the collision between gas atoms and the nanotube walls is a main ingredient leading to the increase of the energy dissipation. Gas damping may be the main reason for the failure of carbon nanotube oscillators working in gas environment. The ambient temperature also has an important effect on oscillations and low temperature is advantageous to sustain oscillations. Supported by the National Basic Research Program of China (“973”) (Grant No. 2006CB300404), the National Natural Science Foundation of China (Grant Nos. 50676019, 50775017), the Jiangsu Province Natural Science Foundation (Grant Nos. BK2006510, BK2007113), and the Research Funding for the Doctor Program from Chinese Educational Ministry (Grant No. 20050286019)  相似文献   

15.
High pressure radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process was adopted to investigate the effect of constant hydrogen dilution technique and gradient hydrogen dilution technique on the structural evolution of intrinsic films and the performance of n-i-p microcrystalline silicon solar cells. The experiment results demonstrated that the grain size and crystalline volume fraction along the growth direction of intrinsic films can be controlled and the performance of solar cells can be greatly improved by gradient hydrogen dilution technique. An initial active-area efficiency of 5.7% (V oc=0.47 V, J sc=20.2 mA/cm2, FF=60%) for the μc-Si:H single-junction n-i-p solar cells and an initial active-area efficiency of 10.12% (V oc=1.2 V, J sc=12.05 mA/cm2, FF=70%) for the a-Si:H/μc-Si:H tandem n-i-p solar cells has been achieved. Supported by the National Basic Research Program of China (“973” Program) (Grant Nos. 2006CB202602, 2006CB202603) and the Tianjin Assistant Foundation for the National Basic Research Program of China (Grant No. 07QTPTJC29500)  相似文献   

16.
Magnetic activity indices are widely used in theoretical studies of solar-terrestrial coupling and space weather prediction. However, the indices suffer from various uncertainties, which limit their application and even mislead to incorrect conclusion. In this paper we analyze three most popular indices, Kp, AE and Dst. Three categories of uncertainties in magnetic indices are discussed: “data uncertainty” originating from inadequate data processing, “station uncertainty” caused by incomplete station covering, and “physical uncertainty” stemming from unclear physical mechanism. A comparison between magnetic disturbances and related indices indicate that the residual Sq will cause an uncertainty of 1–2 in K measurement, the uncertainty in saturated AE is as much as 50%, and the uncertainty in Dst index caused by the partial ring currents is about a half of the partial ring current. Supported by the National Natural Science Foundation of China (Grant No. 40436016), the National Basic Research Program of China (“973”) (Grant No. 2006CB806305), and the KIP Pilot Project of the Chinese Academy of Sciences (Grant No. kzcx3-sw-144)  相似文献   

17.
The extended finite element method (XFEM) is a new numerical method for modeling discontinuity. Research about numerical modeling for concrete hydraulic fracturing by XFEM is explored. By building the virtual work principle of the fracture problem considering water pressure on the crack surface, the governing equations of XFEM for hydraulic fracture modeling are derived. Implementation of the XFEM for hydraulic fracturing is presented. Finally, the method is verified by two examples and the advan- tages of ...  相似文献   

18.
A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60° full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains. Supported by the National Nature Science Foundation of China (Grant Nos. 50571000, 10721202) and the National Basic Research Program of China (“973” Program) (Grant No. 2004CB619305)  相似文献   

19.
Open celled metal foams fabricated through the route of metal sintering are a new class of material that offers novel mechanical and acoustic properties. The metal sintering approach offers a cost-effective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys. The mechanical properties of open-celled steel alloy (FeCrAlY) foams have been characterized in previous studies, with focus placed on the influence of processing defects on stiffness and strength. In this work, the low-Reynolds number fluid properties of FeCrAlY foams were investigated both theoretically and experimentally. Specifically, the static flow resistance of the sintered foams important for heat transfer, filtration and sound absorption was modeled based on a cylinder and a sphere arranged in a periodic lattice at general incidence to the flow. Experimental measurements were subsequently carried out to validate theoretical predictions, with good agreement achieved. Supported by the National Basic Research Program of China (Grant Nos. 2006CB601202, 2006CB601204), the National 111 Project of China (Grant No. B06024), US Office of Naval Research (Grant No. N000140210117), the National Natural Science Foundation of China (Grant Nos. 10572111, 10632060), and the National Hi-Tech Research Development Program (Grant No. 2006AA03Z519)  相似文献   

20.
This paper proposes a new method that reconstructs the information of specimen by using random phase shift step in digital holographic microscopy (DHM). The principles of the method are described and discussed in detail. In practical experiment, because the phase shifter is neither perfectly linear nor calibrated, digital holograms with inaccurate phase shift step are recorded by the charge-coupled device (CCD). The phase could be accurately reconstructed from the recorded digital holograms by using the random phase-shifting algorithm, which makes up for reconstructed phase error caused by ordinary phase-shifting algorithm. The phase aberration compensation is also discussed. In order to verify the flexibility of the proposed method, numerical simulation of random phase-shifting DHM was carried out. The simulation results illustrated that the presented method is effective when the phase shift step is unknown or random in DHM. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2004CB619304), the National Natural Science Foundation of China (Grant Nos. 10625209, 10472050, 10732080), the Project of Beijing Natural Sciences Foundation (Grant No. 3072007), the Program for New Century Excellent Talents (NCET) in Chinese University Ministry of Education (Grant No. NCET-05-0059), and the Opening Funds from the State Key Laboratory of Explosion Science and Technology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号