首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.  相似文献   

2.
Environmental implications of municipal solid waste-derived ethanol   总被引:1,自引:0,他引:1  
We model a municipal solid waste (MSW)-to-ethanol facility that employs dilute acid hydrolysis and gravity pressure vessel technology and estimate life cycle energy use and air emissions. We compare our results, assuming the ethanol is utilized as E85 (blended with 15% gasoline) in a light-duty vehicle, with extant life cycle assessments of gasoline, corn-ethanol, and energy crop-cellulosic-ethanol fueled vehicles. We also compare MSW-ethanol production, as a waste management alternative, with landfilling with gas recovery options. We find that the life cycle total energy use per vehicle mile traveled for MSW-ethanol is less than that of corn-ethanol and cellulosic-ethanol; and energy use from petroleum sources for MSW-ethanol is lower than for the other fuels. MSW-ethanol use in vehicles reduces net greenhouse gas (GHG) emissions by 65% compared to gasoline, and by 58% when compared to corn-ethanol. Relative GHG performance with respect to cellulosic ethanol depends on whether MSW classification is included or not. Converting MSW to ethanol will result in net fossil energy savings of 397-1830 MJ/MT MSW compared to net fossil energy consumption of 177-577 MJ/MT MSW for landfilling. However, landfilling with LFG recovery either for flaring or for electricity production results in greater reductions in GHG emissions compared to MSW-to-ethanol conversion.  相似文献   

3.
The climate change impacts of U.S. petroleum-based fuels consumption have contributed to the development of legislation supporting the introduction of low carbon alternatives, such as biofuels. However, the potential greenhouse gas (GHG) emissions reductions estimated for these policies using life cycle assessment methods are predominantly based on deterministic approaches that do not account for any uncertainty in outcomes. This may lead to unreliable and expensive decision making. In this study, the uncertainty in life cycle GHG emissions associated with petroleum-based fuels consumed in the U.S. is determined using a process-based framework and statistical modeling methods. Probability distributions fitted to available data were used to represent uncertain parameters in the life cycle model. Where data were not readily available, a partial least-squares (PLS) regression model based on existing data was developed. This was used in conjunction with probability mixture models to select appropriate distributions for specific life cycle stages. Finally, a Monte Carlo simulation was performed to generate sample output distributions. As an example of results from using these methods, the uncertainty range in life cycle GHG emissions from gasoline was shown to be 13%-higher than the typical 10% minimum emissions reductions targets specified by low carbon fuel policies.  相似文献   

4.
Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.  相似文献   

5.
Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a transportation fuel. This likelihood of an increase in GHG emissions is indicative of the potential failure of a climate policy targeting reductions in GHG emissions.  相似文献   

6.
Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO? flux from land use change and N?O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.  相似文献   

7.
The life cycle greenhouse gas (GHG) emissions induced by increased biofuel consumption are highly uncertain: individual estimates vary from each other and each has a wide intrinsic error band. Using a reduced-form model, we estimated that the bounding range for emissions from indirect land-use change (ILUC) from US corn ethanol expansion was 10 to 340 g CO(2) MJ(-1). Considering various probability distributions to model parameters, the broadest 95% central interval, i.e., between the 2.5 and 97.5%ile values, ranged from 21 to 142 g CO(2)e MJ(-1). ILUC emissions from US corn ethanol expansion thus range from small, but not negligible, to several times greater than the life cycle emissions of gasoline. The ILUC emissions estimates of 30 g CO(2) MJ(-1) for the California Air Resources Board and 34 g CO(2)e MJ(-1) by USEPA (for 2022) are at the low end of the plausible range. The lack of data and understanding (epistemic uncertainty) prevents convergence of judgment on a central value for ILUC emissions. The complexity of the global system being modeled suggests that this range is unlikely to narrow substantially in the near future. Fuel policies that require narrow bounds around point estimates of life cycle GHG emissions are thus incompatible with current and anticipated modeling capabilities. Alternative policies that address the risks associated with uncertainty are more likely to achieve GHG reductions.  相似文献   

8.
Currently, transport is highly dependent on fossil fuels and responsible for about 23% of world energy-related GHG (greenhouse gas) emissions. Ethanol from sugar cane and corn emerges as an alternative for gasoline in order to mitigate GHG emissions. Additionally, deeper offshore drilling projects such as in the Brazilian Pre-Salt reservoirs and mining projects of nonconventional sources like Tar Sands in Canada could be a solution for supplying demand of fossil fuels in the short and midterm. Based on updated literature, this paper presents an assessment of GHG emissions for four different fuels: ethanol from sugar cane and from corn and gasoline from conventional crude oil and from tar sands. An Ecological Footprint analysis is also presented, which shows that ethanol from sugar cane has the lowest GHG emissions and requires the lowest biocapacity per unit of energy produced among these fuels. Finally, an analysis using the Embodied Water concept is made with the introduction of a new concept, the "CO(2)-Water", to illustrate the impacts of releasing carbon from underground to atmosphere and of the water needed to sequestrate it over the life cycle of the assessed fuels. Using this method resulted that gasoline from fossil fuels would indirectly "require" on average as much water as ethanol from sugar cane per unit of fuel energy produced.  相似文献   

9.
This study focused on the volatile organic compounds (VOCs) and metal leaching from three kinds of composite products made from fiberglass-resin portion (FRP) of crushed printed circuit board (PCB) waste, including phenolic molding compound (PMC), wood plastic composite (WPC), and nonmetallic plate (NMP). Released VOCs from the composite products were quantified by air sampling on adsorbent followed by thermal desorption and GC-MS analysis. The results showed that VOCs emitted from composite products originated from the added organic components during manufacturing process. Phenol in PMC panels came primarily from phenolic resin, and the airborne concentration of phenol emitted from PMC product was 59.4 ± 6.1 μg/m(3), which was lower than odor threshold of 100% response for phenol (180 μg/m(3)). VOCs from WPC product mainly originated from wood flour, e.g., benzaldehyde, octanal, and d-limonene were emitted in relatively low concentrations. For VOCs emitted from NMP product, the airborne concentration of styrene was the highest (633 ± 67 μg/m(3)). Leaching characteristics of metal ions from composite products were tested using acetic acid buffer solution and sulphuric acid and nitric acid solution. Then the metal concentrations in the leachates were tested by ICP-AES. The results showed that only the concentration of Cu (average = 893 mg/L; limit = 100 mg/L) in the leachate solution of the FRP using acetic acid buffer solution exceeded the standard limit. However, concentrations of other metal ions (Pb, Cd, Cr, Ba, and Ni) were within the standard limit. All the results indicated that the FRP in composite products was not a major concern in terms of environmental assessment based upon VOCs tests and leaching characteristics.  相似文献   

10.
Previous studies on the life-cycle environmental impacts of corn ethanol and gasoline focused almost exclusively on energy balance and greenhouse gas (GHG) emissions and largely overlooked the influence of regional differences in agricultural practices. This study compares the environmental impact of gasoline and E85 taking into consideration 12 different environmental impacts and regional differences among 19 corn-growing states. Results show that E85 does not outperform gasoline when a wide spectrum of impacts is considered. If the impacts are aggregated using weights developed by the National Institute of Standards and Technology (NIST), overall, E85 generates approximately 6% to 108% (23% on average) greater impact compared with gasoline, depending on where corn is produced, primarily because corn production induces significant eutrophication impacts and requires intensive irrigation. If GHG emissions from the indirect land use changes are considered, the differences increase to between 16% and 118% (33% on average). Our study indicates that replacing gasoline with corn ethanol may only result in shifting the net environmental impacts primarily toward increased eutrophication and greater water scarcity. These results suggest that the environmental criteria used in the Energy Independence and Security Act (EISA) be re-evaluated to include additional categories of environmental impact beyond GHG emissions.  相似文献   

11.
杨恒  张素风 《上海造纸》2011,(2):25-27,43
该文对蒸煮前采用热水预处理法,提取植物纤维原料中半纤维素的工艺进行了分析和综述。抽提出的半纤维素可以用来生产燃料乙醇或乙酸等化学品,抽提后的植物纤维原料仍可用于制浆造纸。  相似文献   

12.
基于食品加工安全和生态环境防治,该文采用生命周期评价(LCA)方法对以聚丙烯(PP)、聚乳酸(PLA)和热塑性淀粉(TPS)为原料的一次性外卖餐盒进行环境影响指标评估,并比较原料获取阶段(摇篮到门)、制品生产阶段(门到门)、废弃物处理阶段(门到坟墓)的碳排放当量和能源消耗参数。以1000个一次性外卖餐盒为基准流,利用环境评估软件建立了一次性塑料餐盒从摇篮到坟墓全生命周期评估模型。其中,三类典型塑料餐盒的碳排放当量在原材料获取和废弃物处理阶段最大,而资源和能源消耗则主要发生在原材料获取和产品生产阶段。TPS餐盒累计释放98.84 kg CO2,消耗679.02 MJ能源,与PP和PLA餐盒相比碳排放低46.90%、28.30%,节省能源4270.94 MJ、615.2 MJ。因此在餐饮外卖领域推广使用TPS替代制品可有效治理一次性塑料餐盒环境污染。  相似文献   

13.
Employing life cycle greenhouse gas (GHG) emissions as a key performance metric in energy and environmental policy may underestimate actual climate change impacts. Emissions released early in the life cycle cause greater cumulative radiative forcing (CRF) over the next decades than later emissions. Some indicate that ignoring emissions timing in traditional biofuel GHG accounting overestimates the effectiveness of policies supporting corn ethanol by 10-90% due to early land use change (LUC) induced GHGs. We use an IPCC climate model to (1) estimate absolute CRF from U.S. corn ethanol and (2) quantify an emissions timing factor (ETF), which is masked in the traditional GHG accounting. In contrast to earlier analyses, ETF is only 2% (5%) over 100 (50) years of impacts. Emissions uncertainty itself (LUC, fuel production period) is 1-2 orders of magnitude higher, which dwarfs the timing effect. From a GHG accounting perspective, emissions timing adds little to our understanding of the climate impacts of biofuels. However, policy makers should recognize that ETF could significantly decrease corn ethanol's probability of meeting the 20% GHG reduction target in the 2007 Energy Independence and Security Act. The added uncertainty of potentially employing more complex emissions metrics is yet to be quantified.  相似文献   

14.
Beginning with model year 2012, light-duty vehicles sold in the U.S. are subject to new rules that regulate tailpipe greenhouse gas (GHG) emissions based on grams of CO(2)-equivalent per mile (gCO(2)e/mi). However, improvements in vehicle technology, lower-carbon fuels, and improvements in GHG accounting practices which account for distortions related to emissions timing all contribute to shifting a greater portion of life cycle emissions away from the vehicle use phase and toward the vehicle production phase. This article proposes methods for calculating time-corrected life cycle emissions intensity on a gCO(2)e/mi basis and explores whether regulating only tailpipe CO(2) could lead to an undesirable regulatory outcome, where technologies and vehicle architectures with higher life cycle GHGs are favored over technologies with lower life cycle emissions but with higher tailpipe GHG emissions. Two life cycle GHG assessments for future vehicles are presented in addition to time correction factors for production and end-of-life GHG emissions. Results demonstrate that, based on the vehicle designs considered here, there is a potential for favoring vehicles with higher life cycle emissions if only tailpipe emissions are regulated; moreover, the application of time correction factors amplifies the importance of production emissions and the potential for a perverse outcome.  相似文献   

15.
This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.  相似文献   

16.
Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.  相似文献   

17.
在常压下,利用90%乙酸水溶液藤煮三倍体毛白杨,分别做了改变硫酸(催化剂)加入量和蒸煮时间的实验。研究结果表明:浆的得率、木素的脱出量以及半纤维素的降解量随着硫酸加入量和蒸煮时间的增加而增加;但在硫酸加入量加到5%(对绝干原料)时,硫酸不再只作催化剂,其稀酸水解作用已不能忽略;最佳蒸煮条件是:硫酸加入量2.0%,蒸煮时间3h。此外,对乙酸浆的强度性质也做了研究。  相似文献   

18.
对生物精炼技术的概念和木材生物精炼工厂(IFBR)的路线进行了阐述。对传统硫酸盐法制浆造纸工厂如何转化为综合林业生物精炼工厂的原理进行了分析,总结出三种转化类型。详细介绍了近中性预抽提/制浆模式、酸性预水解/制浆模式和碱预处理纤维素糖化发酵生产乙醇模式。保留制浆造纸生产的综合林业生物精炼工厂将是近期主要的发展模式,可为传统造纸工厂带来额外的经济收益。在传统制浆之前进行预抽提,分离出的抽提液可以用来生产乙醇和乙酸及其它化学品,抽提后的木片进行制浆和漂白,对纸浆强度和光学指标没有不良影响,新增用于改造的投资回报率达到7.1%~13%。根据我国造纸工业特点,木材造纸工厂转化为IFBR工厂也将走保留制浆的发展模式;草类原料造纸工厂转化为生物精炼工厂具有一定的优势和可行性。  相似文献   

19.
The objective of this paper is to reveal to what degree biobased jet fuels (biojet) can reduce greenhouse gas (GHG) emissions from the U.S. aviation sector. A model of the supply and demand chain of biojet involving farmers, biorefineries, airlines, and policymakers is developed by considering factors that drive the decisions of actors (i.e., decision-makers and stakeholders) in the life cycle stages. Two kinds of feedstock are considered: oil-producing feedstock (i.e., camelina and algae) and lignocellulosic biomass (i.e., corn stover, switchgrass, and short rotation woody crops). By factoring in farmer/feedstock producer and biorefinery profitability requirements and risk attitudes, land availability and suitability, as well as a time delay and technological learning factor, a more realistic estimate of the level of biojet supply and emissions reduction can be developed under different oil price assumptions. Factors that drive biojet GHG emissions and unit production costs from each feedstock are identified and quantified. Overall, this study finds that at likely adoption rates biojet alone would not be sufficient to achieve the aviation emissions reduction target. In 2050, under high oil price scenario assumption, GHG emissions can be reduced to a level ranging from 55 to 92%, with a median value of 74%, compared to the 2005 baseline level.  相似文献   

20.
The price for raw materials is the main factor in the manufacturing costs for particleoboards. Cost reductions are therefore expected first and foremost in a reduction in the use of wood. There are two ways of achieving this by either reducing particleboard, density or using less valuable wood. In fibreboard production the main cost factor is the high energy requirement for defibration. The use of fine chips instead of fibres could substantially reduce energy costs. Another cost reduction potential lies in the use of cheap raw materials such as waste paper as fibrous material. New manufacturing processes and new products had to be designed and tried out to achieve such cost reductions. This paper reports on new processing and machine techniques for the production of OSB, fibre-particleboards and gypsum fibreboard and on the technological properties of such materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号