首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Parallel arrays of Na+/H+ and Cl-/HCO3- antiporters are believed to catalyze the first step of transepithelial electrolyte secretion in lacrimal glands by coupling Na+ and Cl- influxes across acinar cell basolateral membranes. Tracer uptake methods were used to confirm the presence of Na+/H+ antiport activity in membrane vesicles isolated from rabbit lacrimal gland fragments. Outwardly-directed H+ gradients accelerated 22Na+ uptake, and amiloride inhibited 96% of the H+ gradient-dependent 22Na+ flux. Amiloride-sensitive 22Na+ influx was half-maximal at an extravesicular Na+ concentration of 14 mM. In vitro stimulation of isolated lacrimal acini with 10 microM carbachol for 30 min increased Na+/H+ antiport activity of a subsequently isolated basolateral membrane sample 2.5-fold, but it did not significantly affect Na+/H+ antiport activity measured in intracellular membrane samples. The same treatment increased basolateral membrane Na+,K(+)-ATPase activity 1.4-fold; this increase could be accounted for by decreases in the Na+,K(+)-ATPase activities of intracellular membranes. Thus, it appears that cholinergic stimulation causes recruitment of additional Na+,K(+)-ATPase pump units to the acinar cell basolateral plasma membrane. The mechanistic basis of the increase in basolateral membrane Na+/H+ antiport activity remains unclear.  相似文献   

2.
Hyperglycemia in diabetes mellitus has been shown to activate diacylglycerol (DAG)-protein kinase C (PKC) pathway in the vascular tissues, possibly altering vascular function. We have characterized the effects of vitamin E (d-alpha-tocopherol) on activation of PKC and DAG levels in retinal tissues of diabetic rats, and correlated its effects to retinal hemodynamics using video-based fluorescein angiography (VFA). Comparing streptozotocin-induced diabetic rats to controls, membranous PKC specific activities were increased by 71% (p < 0.05). Western blot analysis showed that the membranous PKC beta II isoform was significantly increased by 133 +/- 45% (p < 0.05). Intraperitoneal injection of d-alpha-tocopherol (40 mg/kg) every other day prevented the increases in membranous PKC specific activity and PKC beta II protein shown by immunoblots. Similar to PKC activities, total DAG levels were increased in the retina and were normalized by d-alpha-tocopherol treatment. Physiologically, abnormalities of retinal blood hemodynamics, as measured using VFA, which previously have been reported to be associated with increases of DAG and PKC levels in the diabetic rats, were prevented by d-alpha-tocopherol treatment in diabetic rats. The direct effect of d-alpha-tocopherol on total DAG and [3H]-palmitate incorporation into DAG were also examined using cultured bovine retinal endothelial cells (REC). Exposure of REC to 22 mM glucose for three days increased total DAG and [3H]-palmitate labeled DAG levels by 35 +/- 8% and 50 +/- 8%, respectively (p < 0.05). The presence of d-alpha-tocopherol (50 micrograms/ml) prevented the increase of both total DAG and [3H]-palmitate labeled DAG levels in cells exposed to 22 mM glucose. These findings suggested that the mechanism of the d-alpha-tocopherol's effect appears to be mediated by the normalization of the hyperglycemia-induced activation of the DAG-PKC pathway which leads to the normalization of abnormal retinal blood flow seen in diabetes mellitus.  相似文献   

3.
Activation of the Na+/H+ exchanger isoform-1 (NHE-1) by angiotensin II is an early signal transduction event that may regulate vascular smooth muscle cell (VSMC) growth and migration. Many signal transduction events stimulated by angiotensin II are mediated by the mitogen-activated protein (MAP) kinases. To define their roles in angiotensin II-mediated NHE-1 activity, VSMCs were treated with angiotensin II and the activities of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) were measured. Angiotensin II rapidly (peak, 5 minutes) activated p38 and ERK1/2, whereas JNK was activated more slowly (peak, 30 minutes). Because angiotensin II stimulated Na+/H+ exchange within 5 minutes, the effects of p38 and ERK1/2 antagonists on Na+/H+ exchange were studied. The MEK-1 inhibitor PD98059 decreased ERK1/2 activity and Na+/H+ exchange stimulated by angiotensin II. In contrast, the specific p38 antagonist SKF-86002 increased Na+/H+ exchange. Two mechanisms were identified that may mediate the effects of p38 and SKF-86002 on angiotensin II-stimulated Na+/H+ exchange. First, angiotensin II activation of ERK1/2 was increased 1. 5- to 2.5-fold (depending on assay technique) in the presence of SKF-86002, demonstrating that p38 negatively regulates ERK1/2. Second, the ability of angiotensin II-stimulated MAP kinases to phosphorylate a glutathione S-transferase fusion protein containing amino acids 625 to 747 of NHE-1 in vitro was analyzed. The relative activities of endogenous immunoprecipitated p38, ERK1/2, and JNK were 1.0, 2.0, and 0.05 versus control, respectively suggesting that p38 and ERK1/2, but not JNK, may phosphorylate NHE-1 in VSMC. These data indicate important roles for p38 and ERK1/2 in angiotensin II-mediated regulation of the Na+/H+ exchanger in VSMC.  相似文献   

4.
The present study was undertaken to examine the effects of diminished extracellular sodium concentration on the vascular action of arginine vasopressin (AVP) in cultured rat vascular smooth muscle cells (VSMC). The preincubation of cells with the 110 mM extracellular Na+ ([Na+]e) solution supplemented with 30 mM choline chloride for 60 minutes enhanced the effect of AVP- (1 x 10(-8) M) induced VSMC contraction. The treatment of 110 mM [Na+]e solution also enhanced the cellular contractile response to the protein kinase C (PKC) activators, phorbol 12-myristate 13-acetate and 1-oleoyl-2-acetyl-glycerol. Furthermore, preincubation with the 110 mM [Na+]e solution also potentiated the effect of 1 x 10(-8) M AVP, but not 1 x 10(-6) M, to increase the cytosolic-free Ca2+ ([Ca2+]i) concentration. The 110 mM [Na+]e media decreased the basal intracellular Na+ concentration and increased intracellular 45Ca2+ accumulation, basal [Ca2+]i and AVP-produced 45Ca2+ efflux. These effects of 110 mM [Na+]e solution to enhance the vascular action of AVP were abolished by using Ca(2+)-free 110 mM [Na+]e solution during the preincubation period. The preincubation with the 110 mM [Na+]e solution did not change either the Kd and Bmax of AVP V1 receptor of VSMC or the AVP-induced production of inositol 1,4,5-trisphosphate. The present in vitro results therefore indicate that the diminished extracellular fluid sodium concentration within a range observed in clinical hyponatremic states enhances the vascular action of AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In a series of experiments aimed to understand the signaling pathways that regulate intracellular pH (pHi) in rat mast cells, the effect of different intracellular mechanisms on the activity of the Na+/H+ exchanger was studied. After promoting an artificial acidification with sodium propionate we determined the variations on pHi rate recovery. pHi was measured with the dye 2, 7-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester. We studied the effect that the inhibition of some cellular exchangers with different drugs induced on pHi. When the Na+/H+ exchanger was inhibited in the presence of amiloride, the recovery rate constant was twofold smaller than the control value. After the recovery, the final pH was lower than the initial value when the cells were treated either with amiloride or with 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (an anionic antiport inhibitor). No effect was observed when the Na+/K+-ATPase or the Na+/Ca2+ exchanger were inhibited. The suppression of intracellular and extracellular calcium did not induced any change in pHi. The addition of thapsigargin, an activator of capacitative calcium influx, or the phorbol esther 12-O-tetradecanoylphorbol-13-acetate (PMA), a protein kinase C (PKC) activator, increased the activity of the antiporter. Both effects were abrogated by inhibition of the Na+/K+-ATPase with ouabain. The increase in cAMP levels did not affect the effect of PMA on pHi recovery, but it blocked the effect of thapsigargin. Our results indicate that rat mast cells regulate pHi by the combination of some anionic exchanger and the Na+/H+ antiporter. And also that the modulation of this exchanger is the consequence of the connection between different intracellular mechanisms, Na+/K+-ATPase-PKC-calcium, among which cAMP seems not to have a direct role.  相似文献   

6.
Increased activity of the Na(+)-H+ exchanger (NHE-1 isoform) has been observed in cells and tissues from hypertensive humans and animals, including the spontaneously hypertensive rat (SHR). No mutation in NHE-1 DNA sequence or alteration in NHE-1 mRNA and protein expression has been demonstrated in hypertension, indicating that alterations in proteins that regulate NHE-1 activity are responsible for increased activity. The recent finding that NHE-1 phosphorylation in SHR vascular smooth muscle cells (VSMCs) was greater than in Wistar-Kyoto rat (WKY) VSMCs suggested that NHE-1 kinases may represent an abnormal regulatory pathway present in hypertension. To define NHE-1 kinases altered in the hypertensive phenotype. We measured NHE-1 kinase activity by an in-gel-kinase assay using a recombinant glutathione S-transferase NHE-1 fusion protein as a substrate. At least 7 NHE-1 kinases (42 to 90 kD) were present in VSMCs. We studied a 90-kD kinase because it was the major NHE-1 kinase and exhibited differences between SHR and WKY. Comparison of 90-kD kinase activity revealed that SHR VSMCs had increased activity in growth-arrested cells and in cells stimulated by angiotensin II (100 nmol/L for 5 minutes). Activation of the 90-kD kinase by angiotensin II was Ca2+ dependent, PKC independent, and partially dependent on the mitogen-activated protein kinase pathway. These findings indicate that increased activity of a 90-kD NHE-1 kinase is a characteristic of SHR VSMCs in culture and suggest that alterations in the 90-kD NHE-1 kinase and/or proteins that regulate its activity may be a pathogenic component in hypertension in the SHR.  相似文献   

7.
Both Na+/Li+ countertransport and electrochemical proton gradient (delta mu(H+))-induced Na+ and H+ fluxes are increased in erythrocytes from patients with essential hypertension. It was assumed that these abnormalities are related to ubiquitous (housekeeping) forms of the Na+/H+ exchanger (NHE-1). To examine this hypothesis, we compared kinetic and regulatory properties of erythrocyte Na+/Li+ countertransport and delta mu(H+)-induced Na+ and H+ fluxes with data obtained for cloned isoforms of the Na+/H+ exchanger. In human erythrocytes, Na+/Li+ countertransport exhibited a hyperbolic dependence on [Na+]0 with a K0.5 of approximately 30 to 40 mmol/L. The activity of this carrier was increased by two-fold in the fraction of erythrocytes enriched with the old cells, was inhibited by 0.1 mmol/L phloretin, and was insensitive to both 1 mmol/L amiloride and ATP depletion. In contrast, delta mu(H+)-induced 22Na influx was exponentially increased at [Na+]0 > 60 mmol/L, was insensitive to phloretin, was partly decreased by both 1 mmol/L amiloride and ATP depletion, and was the same in total erythrocytes and in the old cells. The values of Na+/Li+ countertransport and delta mu(H+)-induced Na+ influx in erythrocytes from different species were not correlating and their ratio in human, rat, and rabbit erythrocytes was 10:1:170 and 1:5:1 for Na+/ Li+ countertransport and delta mu(H+)-induced Na+ influx, respectively. In contrast to the majority of nonepithelial cells and cells transfected with an ubiquitous isoform of Na+/H+ exchanger, both delta mu(H+)-induced Na+ influx and Na+/Li+ countertransport in human erythrocytes were completely insensitive to ethylisopropyl amiloride (20 micromol/L) and cell shrinkage. Thus, our data strongly suggest that human erythrocyte Na+/Li+ countertransport and delta mu(H+)-induced Na+/H+ exchange are mediated by the distinct transporters. Moreover, because the properties of these erythrocyte transporters and NHE-1 are different, it complicates the use of erythrocytes for the identification of the mechanism for activating the ubiquitous form of Na+/H+ exchanger in primary hypertension.  相似文献   

8.
Glomerular vasodilatation in the early stages of type I diabetes mellitus apparently results from arteriolar insensitivity to vasoconstrictors. Since cytosolic free calcium ([Ca2+]i) is a major signaling mechanism for smooth muscle contraction, we studied whether growth of smooth muscle-like rat glomerular mesangial cells in media with high glucose concentration affects [Ca2+]i responses to vasoconstrictors. In cells grown for five days in 22 mM glucose, we observed blunted responsiveness to three structurally unrelated vasoconstrictors that elevate [Ca2+]i via a phospholipase C-dependent mechanism, angiotensin II, prostaglandin F2 alpha, and arginine vasopressin. Inhibition of [Ca2+]i responses was not due to an osmotic effect of high glucose, since it was not mimicked by hypertonic mannitol. While the size of intracellular Ca2+ pools was unaffected by elevated glucose, Na+/Ca2+ exchange was markedly inhibited, thus ruling out both impaired filling of Ca2+ stores and enhanced counter-regulatory mechanisms. Impaired myoinositol transport or intracellular sorbitol accumulation were not responsible for the effects of high glucose, since supplementation of media with myo-inositol or with the aldose reductase inhibitor. Alcon 1576, failed to reverse insensitivity to vasoconstrictors. On the other hand, down-regulation or pharmacological inhibition of protein kinase C completely reversed the effects of high glucose, thus indicating involvement of this signal transduction pathway. These data suggest a possible intracellular mechanism for the impaired vascular sensitivity underlying early renal hemodynamic changes in diabetes mellitus.  相似文献   

9.
Basal and maximal Ca2+ ATPase activity was studied in erythrocytes of 29 healthy controls, 15 patients with insulin-dependent diabetes mellitus (IDDM) and 22 patients with non-insulin-dependent diabetes mellitus (NIDDM). Basal and maximal Ca2+ ATPase activity was significantly decreased in insulin-dependent diabetes mellitus (8.4 +/- 0.5 and 22.5 +/- 1.1 pmol/10(6) RBC/min) and non-insulin-dependent diabetes mellitus (7.3 +/- 1.0 and 18.6 +/- 1.8 pmol/10(6) RBC/min) compared to healthy controls (9.3 +/- 1.0 and 24.6 +/- 1.1 pmol/10(6) RBC/min). Maximal Ca2+ ATPase activity showed a significant correlation to systolic blood pressure in both insulin-dependent diabetes mellitus and non-insulin-dependent diabetes mellitus. There was no significant correlation of maximal Ca2+ ATPase activity to fasting serum glucose concentration and to HbA1 levels. Maximal Ca2+ ATPase activity was significantly correlated to creatinine clearance in non-insulin-dependent diabetes mellitus, but not in insulin-dependent diabetes mellitus. It is concluded that a decreased cellular Ca2+ ATPase activity may predispose to the development of hypertension in diabetes mellitus.  相似文献   

10.
11.
Pimobendan is a new class of inotropic drug that augments Ca2+ sensitivity and inhibits phosphodiesterase (PDE) activity in cardiomyocytes. To examine the insulinotropic effect of pimobendan in pancreatic beta-cells, which have an intracellular signaling mechanism similar to that of cardiomyocytes, we measured insulin release from rat isolated islets of Langerhans. Pimobendan augmented glucose-induced insulin release in a dose-dependent manner, but did not increase cAMP content in pancreatic islets, indicating that the PDE inhibitory effects may not be important in beta-cells. This agent increased the intracellular Ca2+ concentration ([Ca2+]i) in the presence of 30 mM K+, 16.7 mM glucose, and 200 microM diazoxide, but failed to enhance the 30 mM K+-evoked [Ca2+]i rise in the presence of 3.3 mM glucose. Insulin release evoked by 30 mM K+ in 3.3 mM glucose was augmented. Then, the direct effects of pimobendan on the Ca2+-sensitive exocytotic apparatus were examined using electrically permeabilized islets in which [Ca2+]i can be manipulated. Pimobendan (50 microM) significantly augmented insulin release at 0.32 microM Ca2+, and a lower threshold for Ca2+-induced insulin release was apparent in pimobendan-treated islets. Moreover, 1 microM KN93 (Ca2+/calmodulin-dependent protein kinase II inhibitor) significantly suppressed this augmentation. Pimobendan, therefore, enhances insulin release by directly sensitizing the intracellular Ca2+-sensitive exocytotic mechanism distal to the [Ca2+]i rise. In addition, Ca2+/calmodulin-dependent protein kinase II activation may at least in part be involved in this Ca2+ sensitization for exocytosis of insulin secretory granules.  相似文献   

12.
To gain an insight into the effect of erythropoietin (Epo) upon cation transporters and cytosolic free Ca2+ concentration ([Ca2+]i) of vascular smooth muscle cells (VSMC), we studied whether 1) Epo, per se, alters Ca2+ Na+, K+ fluxes and [Ca2+]i of VSMC, and 2) Epo may modify the effect of endothelin (ET-1). Using serially passaged quiescent cultured VSMC, the following results were obtained. 1) Epo had no direct effect on steady state Na(+)-K+ transporters (Na(+)-K+ pump, Na(+)-K+ cotransport and Na(+)-H+ antiport). 2) ET-1 alone substantially stimulated Na(+)-K+ pump, Na(+)-H+ antiport and 45Ca uptake, although these effects were not potentiated in the presence of Epo. 3) Epo alone substantially stimulated 45Ca uptake, leading to an increase in [Ca2+]i, which effect was not seen in Ca2+ deficient medium, and was partially inhibited with diltiazem but not with TMB-8. 4) Even in the presence of Epo, ET-1 and angiotensin II (A II) had substantial stimulatory effect on [Ca2+]i of cultured VSMC. The present data indicate that Epo, per se, elicits an increase in [Ca2+]i of VSMC through the stimulation of inward Ca2+ flux without affecting Na(+)-K+ transporters. In contrast, Epo did not potentiate ET-1's stimulatory effect on the transporters. Although the effect of Epo was subtle compared to ET-1 and A II, it may alter an overall characteristic of vascular smooth muscle cell contractility, possibly leading to blood pressure elevation in patients on maintenance dialysis.  相似文献   

13.
This study investigated the effect of chronic hypertonicity on the OKP cell Na/H antiporter, encoded by Na/H exchanger 3 (NHE3). Chronic (48 h) increases in extracellular glucose, mannitol, or raffinose concentration caused a significant increase in Na/H antiporter activity, while increases in urea concentration were without effect. This effect was seen with changes in osmolality of only 20 mOsm/liter, a magnitude that is observed clinically in poorly controlled diabetes mellitus. Increases in mannitol concentration acutely inhibited and chronically stimulated Na/H antiporter activity. The increase in Na/H antiporter activity induced by hypertonic incubation was resistant to 10(-7) and 5 x 10(-6) M but inhibited by 10(-4) M ethylisopropyl amiloride, consistent with regulation of NHE3. In addition, hypertonicity increased total cellular and plasma membrane NHE3 protein abundance twofold, with only a small increase in NHE3 mRNA abundance. We conclude that chronic pathophysiologically relevant increases in tonicity lead to increases in NHE3 protein abundance and activity. This may be responsible for increased proximal tubule apical membrane Na/H antiporter activity in poorly controlled diabetes mellitus, which could then contribute to hypertension, glomerular hyperfiltration and diabetic nephropathy.  相似文献   

14.
There is increasing evidence for an additional acute, nongenomic action of the mineralocorticoid hormone aldosterone on renal epithelial cells, leading to a two-step model of mineralocorticoid action on electrolyte excretion. We investigated the acute effect of aldosterone on intracellular free Ca2+ and on intracellular pH in an aldosterone-sensitive Madin-Darby canine kidney cell clone. Within seconds of application of aldosterone, but not of the glucocorticoid hydrocortisone, there was a 3-fold sustained increase of intracellular Ca2+ at a half-maximal concentration of 10(-10) mol/liter. Omission of extracellular Ca2+ prevented this hormone response. In the presence of extracellular Ca2+ aldosterone led to intracellular alkalinization. The Na+/H+ exchange inhibitor ethyl-isopropanol-amiloride (EIPA) prevented the aldosterone-induced alkalinization but not the aldosterone-induced increase of intracellular Ca2+. Omission of extracellular Ca2+ also prevented aldosterone-induced alkalinization. Instead, aldosterone led to a Zn(2+)-dependent intracellular acidification in the presence of EIPA, indicative of an increase of plasma membrane proton conductance. Under control conditions, Zn2+ prevented the aldosterone-induced alkalinization completely. We conclude that aldosterone stimulated net-entry of Ca2+ from the extracellular compartment and a plasma membrane H+ conductance as prerequisites for the stimulation of plasma membrane Na+/H+ exchange which in turn modulates K+ channel acitivity. It is probable that the aldosterone-sensitive H+ conductance maintains Na+/H+ exchange activity by providing an acidic environment in the vicinity of the exchanger. Thus, genomic action of aldosterone determines cellular transport equipment, whereas the nongenomic action regulates transporter activity that requires responses within seconds or minutes, which explains the rapid effects on electrolyte excretion.  相似文献   

15.
Intraerythrocytic malaria parasites produce vast amounts of lactic acid through glycolysis. While the egress of lactate is very rapid, the mode of extrusion of H+ is not known. The possible involvement of a Na+/H+ antiport in the extrusion of protons across the plasma membrane of Plasmodium falciparum has been investigated by using the fluorescent pH probe 6-carboxyfluorescein. The resting cytosolic pH was 7.27 +/- 0.1 in ring stage parasites and 7.31 +/- 0.12 in trophozoites. Spontaneous acidification of parasite cytosol was observed in Na(+)-free medium and realkalinization occurred upon addition of Na+ to the medium in a concentration-dependent manner, with no apparent saturation. The rate of H(+)-efflux at the ring stage was higher than that at the trophozoite stage due to the larger surface/volume ratio of the young parasite stage. Na(+)-dependent H(+)-efflux was: 1) inhibited by the Na+/H+ inhibitors amiloride and 5-(N-ethyl-N-isopropyl) amiloride (EIPA), though at relatively high concentrations; 2) augmented with rising pH6 (pHi = 6.2, [Na+]o = 30 mM); and 3) decreased with increasing pHi (pHo = 7.4; [Na+]o = 30 mM). The pHi and the pHo dependencies of H(+)-efflux were almost identical at all parasite stages. Only at pHi > 7.6 efflux was totally obliterated. The target of this inhibitory effect is probably other than the antiport. Results indicate that H(+)-egress is mediated by a Na+/H+ antiport which is regulated by host and parasite pH and by the host cytosol sodium concentration. The proton transport capacity of the antiport can easily cope with all the protons of lactic acid produced by parasite's glycolysis.  相似文献   

16.
This article reviews related studies from the authors' laboratory, which focus on the regulation of vascular Na+,K+-ATPase in hypertension. Earlier studies, including the authors', suggested that Na-pump activity in cardiovascular tissues is subject to regulation during hypertension; most of these studies report a stimulation of the vascular enzyme during established stages of hypertension. To test hypothesis that in vascular smooth muscle, strain resulting from elevated pressure may be a signal initiating a cascade of events leading to increased expression of Na+,K+-ATPase, the authors used cell culture and the Flexercell Strain Unit to apply cyclical stretch to rat aortic smooth muscle cells (ASMC) for several days. These studies demonstrated that mechanical strain induces the upregulation of both the alpha-1 and alpha-2 subunits of Na+,K+-ATPase. Mechanisms underlying these changes appear to involve a transient increase in intracellular sodium entering the cell through stretch-activated channels. Calcium entering the cell via L-type channels did not affect stretch-induced upregulation of the alpha isoforms. In addition, protein kinase C inhibition resulted in inhibition of the Na-pump during stretch, but not under nonstretch conditions. The authors conclude that the stretch component of vascular pressure upregulates the Na+,K+-ATPase catalytic subunits. Intracellular sodium may be a signal for this regulation. In addition, phosphorylation by PKC may be important in stretch-induced short-term regulation of the vascular Na-pump.  相似文献   

17.
In goldfish, gonadotropin (GTH-II) responses to the two endogenous GnRHs, salmon-GnRH and chicken-GnRH-II, are mediated by activation of protein kinase C (PKC) and voltage-sensitive Ca2+ channels. In this study, we investigated the role of extracellular Na+, voltage-dependent Na+ channels, and the plasma membrane Na+/H+ exchanger in mediating GnRH-stimulated GTH-II release from dispersed goldfish pituitary cells. Perifusion with Na+-depleted medium reduced the GTH-II response to both GnRHs and the response to the protein kinase C activator, phorbol 12-myristate 13-acetate. Conversely, increasing Na+ influx with veratridine (100 microM) stimulated GTH-II release in the presence and in the absence of extracellular Ca2+. However, the voltage-sensitive Na+ channel blocker, tetrodotoxin (1 microM), did not affect GnRH- stimulated GTH-II release, and the GnRHs did not affect voltage-sensitive Na+ currents. In contrast, the Na+/H+ antiport inhibitors, amiloride or its analog, DMA, reduced GTH-II responses to the GnRHs and phorbol 12-myristate 13-acetate. The Na+/H+ antiport inhibitors did not affect voltage-sensitive Ca2+ or Na+ currents or the GTH-II release response to the Ca2+ ionophore, ionomycin. These findings indicate that extracellular Na+ and the Na+/H+ exchanger are involved in the mediation of GnRH-stimulated GTH-II release. In addition, Na+ entry may modulate GTH-II release independent of extracellular Ca2+.  相似文献   

18.
We investigated the mechanism by which H2O2 mediates an increase in [Na+]i in L929 cells and the relevance of this Na+ load for H2O2-induced cell injury. [Na+]i increased early after exposure to H2O2 as monitored by fluorescence spectrophotometry of cells loaded with SBFI. The omission of Na+ from the incubation buffer significantly reduced H2O2-cytotoxicity. This protection could not be mimicked by inhibition of either the Na+/H+-antiporter, the Na+/HCO3- -cotransporter, or the Na+/K+/2Cl- -cotransporter by using Hoechst 694 (0.02 mM) or 4-acetamido-4'-isothio-cyanatostilbene-2,2'-disulfonic acid (SITS) (0.02 mM) or furosemide (1 mM) and bumetanide (0.5 mM). Only the blocker of the Na+/Ca2+-exchanger bepridil (0.2 mM) significantly reduced H2O2-cytotoxicity but without interfering with the increase in [Na+]i. H2O2 caused a rapid and sustained increase in [Ca2+]i, which was significantly reduced in bepridil pretreated cells and after replacing extracellular Na+ by choline. H2O2 was found to initiate a cellular uptake of unphysiological Ni2+ by using Newport Green diacetate as fluorescent dye. Our data suggest that H2O2 mediates Na+-influx across the plasma membrane rather unspecifically than through specific transporters. The protective effect of bepridil against H2O2-cytotoxicity occurs as a consequence of a reduced cellular Ca2+-uptake. We conclude that H2O2-mediated unspecific accumulation of Na+ seems to favor a Ca2+-influx into the cells, which takes place on the Na+/Ca2+-exchanger operating in reverse mode in exchange for Na+-efflux. Therefore, H2O2-induced cellular Na+ accumulation appears to play a permissive rather than a triggering role in H2O2-mediated cell injury.  相似文献   

19.
Fenspiride inhibits the calcium signal evoked by the inflammatory peptide formyl-Met-Leu-Phe (fMLP) in peritoneal macrophages, but at concentrations (approximately 1 mM) far above the therapeutic range (approximately 1 microM). Here, in rat alveolar macrophages, high fenspiride concentrations (1 mM) were required to inhibit the calcium signals evoked by the calcium agonist Bay K8644 or by ionomycin. Moreover, fenspiride (1 mM) was a poor inhibitor of the cell membrane depolarization induced by gramicidine D. By contrast, fenspiride blocked Na+-H+ antiport activation by (i) fMLP with an IC50 = 3.1 +/- 1.9 nM and (ii) PMA (phorbol 12-myristate 13-acetate) with an IC50 = 9.2 +/- 3.1 nM. Finally, protein kinase C (PKC) activity of macrophage homogenate was not significantly modified by 10 or 100 microM fenspiride (at 100 microM: 2.57 +/- 1.60 vs. 2.80 +/- 1.71 pmol/10(6) cells/min). In conclusion, fenspiride inhibits fMLP- and PMA-induced pH signals in rat alveolar macrophages, probably by acting distally on the PKC transduction signal. This pH antagonistic action may be relevant for the antiinflammatory mechanism of fenspiride and requires further investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号