首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析   总被引:1,自引:0,他引:1  
研究了一种全参数化的正弦曲线蜂窝结构,通过Pro/Engineer构建了其参数化模型,采用ABAQUS建立了正弦曲线蜂窝结构的有限元模型。研究了不同振幅、不同胞壁厚度的正弦曲线蜂窝结构在不同冲击速度下的面内动力学响应。研究表明,正弦曲线蜂窝结构的反作用力波动情况与其振幅以及冲击速度直接相关。振幅越小、蜂窝结构胞壁越厚,其反作用力波动越明显。速度越高,蜂窝结构的反作用力波动越明显。而振幅较大的正弦曲线蜂窝结构,在不同的速度下,其反作用力表现出了较好的稳定性。正弦曲线蜂窝结构固定端的平台应力主要与其厚度有直接关系,与冲击速度无关。通过对正弦曲线蜂窝结构的能量吸收情况分析表明,随着振幅的增加,其能量吸收能力相对下降,随着速度的提高,蜂窝结构能量吸收能力趋向于一致。结果表明,正弦曲线蜂窝结构的轻微拉胀效应可增强其平面内能量吸收能力,相对普通的常规正六边形蜂窝结构,具有更好的能量吸收效果。  相似文献   

2.
由于负泊松比蜂窝结构具备高比刚度、优良吸能特性等优点,近年来受到众多学者的关注。基于内凹六边形负泊松比结构,提出一种空竹型负泊松比蜂窝结构。运用一维冲击理论推导出结构的冲击临界速度。通过有限元ABAQUS/EXPLICIT对结构进行面内冲击响应特性分析,结果表明:与传统的内凹六边形结构相比,空竹型蜂窝结构具有更高的平台应力和比吸能,提高了结构的耐撞性和能量吸收能力;给出了不同冲击速度和结构参数对空竹型蜂窝平台应力与比吸能的影响规律。研究结果可为负泊松比蜂窝结构在实际工程中应用提供设计指导。  相似文献   

3.
利用显式动力有限元法数值研究了冲击载荷下星形节点周期性蜂窝结构的面内冲击动力学响应特性。在保证各胞元壁长不变的前提下,通过改变胞壁厚度、内凹箭头节点间夹角和韧带长度等微结构参数,首先建立了星形节点周期性蜂窝结构的有限元模型。在此基础上,讨论了冲击速度和微结构参数对星形蜂窝材料的宏/微观变形、密实应变和动态冲击强度的影响。结果表明,由于胞壁受膜力和弯矩的耦合作用,在中、低速冲击载荷下,试件表现出负泊松比材料在轴向压缩时的"颈缩"现象。基于能量效率法和一维冲击波理论,给出了星形蜂窝结构密实应变和动态平台应力的经验公式,以预测多胞材料的动态承载能力。该研究将为拉胀多胞材料冲击动力学性能的多目标优化设计提供新的设计思路。  相似文献   

4.
郭之熙  肖俊华 《工程力学》2023,(10):204-212+236
该文提出一种多弧段曲边内凹可调泊松比新型胞元。通过调整弧角,可以设计得到正泊松比、零泊松比和负泊松比的胞元结构。利用能量法求得结构的等效泊松比与等效弹性模量解析表达式,所得结果与有限元结果吻合较好。基于提出的新型胞元构建多胞蜂窝结构,利用数值方法讨论了低速和高速冲击作用下,正泊松比、零泊松比和负泊松比结构的冲击变形失效行为与单位质量能量吸收率。研究发现:低速冲击时,三种泊松比(正/零/负)结构的局部变形不同;高速冲击时,惯性效应使局部变形集中在冲击端,三种泊松比(正/零/负)结构的胞元变形模式不同。不论低速还是高速冲击,负泊松比结构都表现出优异的吸能效果。随着壁厚的增加,结构的吸能效果显著增强。  相似文献   

5.
为了降低最大峰值应力和维持良好的冲击载荷一致性,在内凹六边形蜂窝(CHH)的基础上,基于机械超材料的设计理念,提出了一种新型负泊松比内凹环形蜂窝(RCH)结构模型。利用显式动力有限元方法,研究了面内冲击载荷作用下胞元微结构对该内凹环形蜂窝材料的变形行为、动态冲击应力和能量吸收特性的影响。研究结果表明:除了冲击速度和相对密度,内凹环形蜂窝结构的冲击动力学响应还依赖于胞元微结构;在中低速冲击作用下,内凹环形蜂窝亦表现出明显的负泊松比效应;与传统内凹六边形蜂窝不同,在相同冲击速度下,内凹环形蜂窝的最大峰值应力明显降低,并且具有良好的冲击载荷一致性;基于一维冲击波理论,还给出了内凹环形蜂窝材料的动态平台应力经验公式,理论计算结果和有限元结果吻合较好。  相似文献   

6.
提出了一种内凹三角形负泊松比材料,在保证元胞其他几何参数不变的前提下,通过改变三角形侧边内凹角度,建立了不同内凹形式的内凹三角形负泊松比材料模型。通过显式动力有限元软件LS-DYNA具体分析了内凹形式与冲击速度对内凹三角形负泊松比材料面内冲击变形和能量吸收能力的影响。研究结果表明:冲击载荷作用下,在冲击端,相对于三边内凹的情况,单边内凹的平台应力更大;在固定端,侧边内凹程度越小,输出应力滞后时间越长。相比于内凹六边形负泊松比材料,内凹三角形负泊松比材料吸能更平稳,压缩量也更大,并随着冲击速度的提高,内凹三角形负泊松比材料表现出更强的能量吸收能力。  相似文献   

7.
倾斜荷载在汽车碰撞事故中无法避免,严重影响多胞材料的力学响应。以内凹三角形负泊松比材料为研究对象,通过显式动力有限元软件LS-DYNA具体分析了冲击倾角(0°~10°)与冲击速度(20~70 m/s)对内凹三角形负泊松比材料面内冲击的变形模态和动力响应的影响,并构造了完整的变形模式分类图。引入最佳承载角的概念,当冲击倾角β=4°时,诱发了稳定有序的变形模式,使得抵抗变形的形式主要以结构胞壁的压缩与弯曲为主,平台应力值与吸能值得到了较大的提升,进一步发挥了结构的抗承载能力,甚至超过了理想的轴向冲击工况。这一特征与六边形蜂窝结构有所不同,对汽车吸能构件的设计具有重要的指导意义。  相似文献   

8.
负泊松比力学超材料具有高可设计性、轻量化以及抗冲击方面的优势,引起学者们的关注,对内凹六边形结构、手性结构等经典构型进行了广泛研究。提出了一种新型的十字形负泊松比蜂窝结构,基于能量法对该结构泊松比的解析式进行了推导,所得解析解与有限元结果吻合良好,证明了推导方法的有效性;针对不同冲击速度和不同杆长比例系数的十字形蜂窝结构的变形模式、冲击载荷下的名义应力应变曲线以及能量吸收特性进行了研究。结果表明:杆长比例系数越小,泊松比越小;冲击速度和杆长比例系数会影响十字形蜂窝结构的变形模式、冲击载荷下的名义应力应变曲线和平台应力;十字形蜂窝结构的体吸能在中速冲击下会随应变增大出现增长加快现象,而高速冲击下体吸能增长趋势不再随应变增大出现加快但呈现出规律的波浪形增长。  相似文献   

9.
利用蜂窝多孔材料良好的抗冲击吸能特性,改进面内刚度较低难以承载缺点,设计具有宏观负、正泊松比效应的新型船用抗冲击与低频隔振性能兼顾的蜂窝基座。调节内外圆环封板、上下面板刚度可调节蜂窝基座的固有频率及承载性能;调节蜂窝胞元壁厚、胞元角度及层数可调节基座抗冲击特性及低频隔振性能。研究保持蜂窝芯总质量不变的蜂窝层数及胞元壁厚对基座隔振性能及抗冲击性能影响,给出蜂窝胞元壁厚对基座强度、固有频率、振级落差及抗冲击性影响曲线。  相似文献   

10.
对新型宏观负泊松比蜂窝夹芯船舶隔振器形状及尺寸设计方法进行研究,探讨蜂窝形状参数及壁厚对整体隔振性能影响。建立负泊松比蜂窝夹芯隔振器动力学分析有限元模型,给出蜂窝胞元壁厚、胞元宽度尺寸、胞元高度尺寸对隔振器结构应力、固有频率、底部振级及振级落差影响曲线;建立以蜂窝胞元壁厚、胞元宽度尺寸、胞元高度尺寸为设计变量的蜂窝夹芯隔振器动力学优化模型。结果证明了形状参数影响曲线的有效性,可为负泊松比蜂窝隔振器设计提供指导。  相似文献   

11.
以箭头型负泊松比蜂窝结构为研究对象,在已有的冲击载荷下蜂窝结构平台应力理论模型的基础上,着重考虑平台区和平台应力增强区,建立了其受冲击载荷时吸收能量的理论模型,得到了其在冲击载荷下不同阶段吸收能量及对应等效应力大小与几何参数的关系。基于ANSYS仿真软件模拟了在冲击载荷作用下,箭头型负泊松比蜂窝结构的吸能和应力情况,对比验证了仿真结果与理论模型。结果表明,利用所建立的理论模型能够较为准确地描述蜂窝结构在冲击载荷下的动态吸能性能,并为负泊松比蜂窝结构的几何参数选择和优化设计提供指导。  相似文献   

12.
尤泽华  肖俊华 《工程力学》2022,39(12):248-256
该文数值研究了一种可变弧边内凹多胞蜂窝负泊松比结构的面内冲击动力学性能,讨论了胞元弧角和冲击速度对结构的变形失效模式、动力响应曲线、能量吸收特性和平台应力特征的影响。研究表明:冲击过程结构中出现旋转位移,胞元发生扭曲变形;结构变形受胞元弧角的影响,胞元弧角取值不同时结构具有不同的面内冲击失效模式;冲击过程中应力-应变曲线包括初始阶段、稳定阶段和锁定阶段,最终结构进入密实化阶段;结构的体能量吸收值和平台应力受冲击速度和胞元弧角的影响显著。  相似文献   

13.
赵著杰  侯海量  李典  夏习持 《振动与冲击》2022,(17):101-110+122
为探究结构构型和规格参数对胞元结构综合力学特性的影响,设计了7种体积相等、结构构型不同的胞元结构,开展了准静态压缩试验,得到了各胞元结构的变形破坏过程和应力应变关系,分析了胞元构型和壁厚变化对结构承载能力及能量吸收性能的影响,结果表明:内凹鼓形、内凹六边形、内凹弧形胞元结构均呈现出宏观负泊松比特性,外凸六边形、外凸鼓形、正方形胞元结构呈现出宏观正泊松比特性,外凸弧形胞元结构呈现出近似零泊松比特性;胞元结构的直立壁面和曲面(折线面)共同承担压缩载荷,直立壁面主要发生失稳变形,曲面(折线面)主要发生弯曲外张变形或弯曲回缩变形,直立壁面的失稳临界载荷和屈曲模式对结构承载力和平台应力起主导作用;在各个宏观正泊松比胞元中,外凸六边形胞元的结构承载能力较强,外凸鼓形胞元的结构吸能特性较好,在各个宏观负泊松比胞元中,内凹弧形胞元的结构承载能力和结构吸能特性均较好。  相似文献   

14.
张新春  刘颖  张建辉 《功能材料》2013,(15):2143-2147
利用显式动力有限元法对三角形蜂窝材料在面内冲击载荷下的动力响应和能量吸收特性进行了研究。具体讨论了相对密度、冲击速度以及冲击方向对蜂窝材料变形模式、平台应力和比能量吸收能力的影响。结果表明,除了胞元的微结构特征参数(例如壁长、壁厚以及扩张角等),蜂窝材料的动力响应特性还依赖于冲击速度和冲击方向。在相对密度和冲击速度不变的前提下,试件沿Y方向冲击时表现为更高的平台应力和更强的能量吸收能力。随着冲击速度的增加,惯性效应明显,蜂窝材料的平台应力和能量吸收能力对冲击方向更敏感。将为多胞材料动力学多目标优化设计提供新的设计思路。  相似文献   

15.
基于显示动力学有限元ABAQUS/Explicit建立了流固耦合计算模型。研究了具有负泊松比特性的橡胶蜂窝空腔覆盖层在水下非接触性爆炸作用下的抗冲特性,分析了覆盖层的动态响应并讨论了高度、胞元壁厚和扩张角度等结构参数对覆盖层抗冲击性能的影响。结果表明,负泊松比蜂窝覆盖层水下爆炸抗冲性能依赖于结构参数,随着高度增加、胞元壁厚的减小、扩展角绝对值的增大,覆盖层的抗冲性能得到有效提高。  相似文献   

16.
由于制造精度和生产工艺等原因,微结构材料内部往往会出现胞元缺失,从而对其整体性能产生影响。以三星型微结构为研究对象,首先,采用准静态压缩试验对模型可靠性进行了验证;其次,通过有限元软件Hyperworks和显示动力有限元软件LS-DYNA对其进行联合仿真分析,得到不同冲击速度和不同微元胞缺失数目下该三星型微结构的变形模式、应力-应变曲线、吸能曲线和平台应力对比曲线。结果表明:当冲击速度处于一定范围(20~80 m/s)时,微元胞缺失数目越多,三星型微结构的负泊松比效应(negative Poisson’s ratio, NPR)越弱,从而平台应力显著降低,吸能特性减弱;而在微元胞缺失数目相同的条件下,冲击速度越高,平台应力越大,吸能量越多。该研究为其在车辆吸能件中的应用提供数据支持。  相似文献   

17.
目的 为了研究矩形与X形组合蜂窝材料在异面冲击载荷下的缓冲吸能特性,建立矩形与X形组合蜂窝的有限元模型,分析在不同冲击条件下组合蜂窝结构的能量吸收、动态平台应力及其变形模式。方法 借助ANSYS/LS–DYNA软件建立可靠的基于单元阵列的异面缓冲性能有限元分析模型,基于该模型在不同结构参数和冲击速度下进行异面动态冲击仿真分析,将结果以图表等形式进行展示。结果 组合蜂窝结构的异面缓冲性能较矩形、X形蜂窝结构更为优异。当相对密度一定时,随着扩展角的增大,组合蜂窝结构的缓冲性能会有一定提升。扩展角为90°的组合蜂窝结构与扩展角为70°、50°和30°的组合蜂窝相比,其单位体积能量吸收值分别提高了3.77%、4.53%和26.95%。异面动态平台应力与冲击速度和结构参数之间,可用某一确定的曲线关系进行拟合。结论 矩形与X形蜂窝之间会产生较强的耦合效应,使组合蜂窝结构的接触载荷和总能量吸收值均大于两者之和;冲击速度对变形模式的影响较大,在冲击载荷下存在3种变形模式,但壁厚的改变对变形模式并未产生明显影响。当扩展角和冲击速度一定时,组合蜂窝异面动态平台应力与壁厚边长比呈二次曲线关系;给定扩展角和壁厚时,异面动态平台应力与冲击速度呈一次曲线关系。  相似文献   

18.
负泊松比结构因其反常的变形机制在缓冲吸能领域具有可观的应用前景。该文设计并表征了一种参数可调的新型负泊松比结构。采用理论和数值模拟相结合的研究手段,系统地研究了结构的静/动态力学性能和吸能特性。研究结果表明:新结构具有较好的力学性能和参数可调性;在静态压缩条件下,新型蜂窝结构具有更高的刚度和更优异的吸能性能,其比吸能值是内凹型蜂窝结构的2.64倍,是星型蜂窝结构的3.89倍;在动态冲击条件下,内凹-星型结构的吸能性能在低速时优于两种传统蜂窝结构(内凹和星型),在中高速时其吸能优势有所退化,与内凹型蜂窝结构相当,但远高于星型蜂窝结构。  相似文献   

19.
目的 研究冲击速度和结构参数对米字形填充正方形蜂窝异面平台应力的影响规律。方法 利用ANSYS/LS-DYNA建立该蜂窝可靠的基于胞元阵列的异面冲击分析有限元模型;基于简化的超折叠单元理论推导该蜂窝的准静态平台应力理论公式,理论值与仿真值相吻合验证理论公式的正确性。对不同壁厚边长比的蜂窝,在不同冲击速度下进行异面冲击仿真分析,利用LS-PrePost软件处理得到相应的接触力-位移曲线,进一步处理得到变形模式和平台应力,并以图表的形式加以展示与分析。结果 不同冲击速度下结构参数固定的蜂窝表现出LS、MS和HS等3种不同的异面冲击变形模式,从LS模式转变到MS模式再到HS模式的临界速度分别约为20 m/s和150 m/s;壁厚边长比对变形模式的影响可忽略。结论 该蜂窝动态平台应力随冲击速度(或壁厚边长比)的增加而增大,且增长速率不断提高。当其他参数固定时,LS模式和MS模式下该蜂窝的动态平台应力与冲击速度呈二次函数关系,HS模式下动态平台应力与冲击速度的平方呈线性关系;动态平台应力与壁厚边长比呈幂函数关系。基于仿真计算结果,得到了该蜂窝动态平台应力的经验表达式。  相似文献   

20.
具有手性蜂窝结构的力学超材料是近年来发展起来的高性能工程材料,它具有轻质、高比刚度、负泊松比、结构参数可调以及力学性能稳定等优点。其不仅可以实现面内变形,面外承载的双重力学作用,还具有出色的隔振、吸声降噪以及控制弹性波的传播等工程应用潜质,在智能结构、车辆船舶、航空航天等领域具有巨大的发展潜力。本文从其弹性和抗冲击两个力学性能方面进行综述。首先介绍并评述了近年来蜂窝结构力学超材料的面内杨氏模量、负泊松比特性以及面外剪切模量等弹性性能的理论分析研究进展。在抗冲击性能方面,从力学模型建立和有限元分析的角度出发,对手性蜂窝结构力学超材料在冲击载荷作用下的整体变形及其抗冲击性能的研究现状分别进行了评述。最后指出针对蜂窝结构力学超材料弹性及冲击性能的研究,可进一步建立内部韧带变形及力的传递力学模型以及深入探索冲击过程吸能机理等,以期为该类力学超材料内部韧带和节点环结构的优化设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号