共查询到20条相似文献,搜索用时 12 毫秒
1.
针对约束层阻尼板的拓扑优化问题,以模态损耗因子最大化为目标函数,约束阻尼材料体积分数为约束条件,建立了约束阻尼板的拓扑优化模型。基于模态应变能方法,推导了目标函数对设计变量的灵敏度。采用双向渐进优化算法(BESO)对约束阻尼材料的布局进行了拓扑优化,获得了约束阻尼材料的最优拓扑构型,并与渐进优化算法(ESO)进行了比较。研究结果表明:双向渐进优化算法相比单向渐进优化算法,获得的模态损耗因子更高,阻尼减振效果更好。 相似文献
2.
旨在为结构减振设计奠定一定基础,研究约束阻尼板减振优化问题。建立约束阻尼板动力学平衡方程,推导模态损耗因子计算模型。构建以模态损耗因子最大为目标,黏弹性材料用量及模态频率变动最小为约束的阻尼板拓扑优化数学模型,推导模态损耗因子灵敏度算式。引入渐进结构优化方法对约束阻尼板动力学优化模型进行求解,采用独立网格滤波技术,解决优化迭代中出现的棋盘格问题。编制阻尼板拓扑优化程序,实现约束阻尼板减振优化。仿真显示,与非优化删除方法相比,采用渐进拓扑动力学优化,更有利于实现黏弹材料优化布局,且模态频率变化比较稳定。对阻尼结构进行谐响应分析,以验证拓扑优化方法有效性,引入模态损耗因子体积密度指标以评价阻尼板减振拓扑优化性能。研究表明,若能实现结构模态损耗因子最大化,约束阻尼板减振效果明显。该方法对于约束阻尼板设计具有较强实用性,拥有较高的稳定性。 相似文献
3.
4.
5.
6.
根据经典薄板理论,建立约束阻尼板有限元模型,将其视作镶嵌于无限大刚性障板,利用Rayleigh积分法推导结构的辐射声功率及灵敏度表达式。以一阶峰值频率或频带激励下的声功率最小化为目标,约束阻尼材料体积分数为约束条件,建立拓扑优化模型,采用渐进优化算法,编制了优化计算程序,获得了约束阻尼材料的最优拓扑构型,并与全覆盖板及基板的辐射声功率进行了对比。研究表明:以声功率最小化为目标,对约束阻尼材料布局进行拓扑优化,能有效抑制结构的振动声辐射,为结构低噪声设计提供了重要的理论参考和技术手段。 相似文献
7.
8.
旨在为减振设计提供理论基础,研究约束阻尼结构拓扑动力学优化。以阻尼材料用量、振动特征方程、模态频率为约束,以多模态损耗因子倒数的加权和最小为目标,建立了约束阻尼结构拓扑优化模型,引入MAC因子控制结构的振型跃阶。在引入质量阵惩罚因子基础上推导出优化目标灵敏度。考虑到优化目标函数的非凸性,采用常规准则法(OC)寻优可能会使拓扑变量出现负值或陷入局部优化,故引入数学规划移动渐近技术对OC法进行改进,从而将全体拓扑变量纳入改进算法的优化迭代全过程。编程实现了约束阻尼板改进OC法拓扑动力学优化并对改进法性能进行了仿真。结果显示,改进算法可得到更合理的约束阻尼层构形,可使结构取得更佳减振效果。研究表明,改进算法迭代稳定性更好、寻优效率更高、更具全域最优性。 相似文献
9.
首先建立了某车型声振耦合分析模型,并分析计算了车内噪声性能,获知了噪声异常峰值频率。接着对模态贡献量进行分析,确定了对车内噪声贡献量最大的模态阶次及其振型。然后以该阶模态振型最大节点处的频率响应最小化为优化目标,对车身壁板的阻尼层布局进行拓扑优化。最后,经过计算验证结果表明,优化方案使车内前、后排噪声下降10dB(A)以上。上述研究表明,该阻尼层优化方法可作为一种有效的车内噪声控制手段。 相似文献
10.
以某乘用车怠速工况下的车内噪声为研究对象,建立内饰车身的声-固耦合有限元模型,施加实测的加速度激励预测车内噪声响应。通过有限元模型获取系统传递函数,结合实测加速度激励建立传递路径分析模型,分析怠速工况下驾驶员右耳位置121 Hz频率处各路径的声学噪声贡献情况,以贡献量较大的路径为板件贡献量分析的激励输入位置,确定后地板为铺设阻尼的目标板件。以121 Hz处驾驶员右耳声压最小为目标,建立拓扑优化模型,对后地板阻尼进行布局优化。结果表明,怠速工况下121 Hz峰值频率处驾驶员右耳声压级下降5.59 dB(A),传递路径分析对阻尼结构优化设计具有一定指导作用。 相似文献
11.
以某乘用车怠速工况下的车内噪声为研究对象,建立内饰车身的声-固耦合有限元模型,施加实测的加速度激励预测车内噪声响应。通过有限元模型获取系统传递函数,结合实测加速度激励建立传递路径分析模型,分析怠速工况下驾驶员右耳位置121 Hz频率处各路径的声学噪声贡献情况,以贡献量较大的路径为板件贡献量分析的激励输入位置,确定后地板为铺设阻尼的目标板件。以121 Hz处驾驶员右耳声压最小为目标,建立拓扑优化模型,对后地板阻尼进行布局优化。结果表明,怠速工况下121 Hz峰值频率处驾驶员右耳声压级下降5.59 dB(A),传递路径分析对阻尼结构优化设计具有一定指导作用。 相似文献
12.
基于各向正交惩罚材料密度法法,建立了以自由阻尼结构模态阻尼比最大化为目标,以阻尼材料体积为约束条件,以阻尼材料单元相对密度为设计变量的拓扑优化数学模型。推导了模态阻尼比对阻尼单元相对密度的灵敏度和设计变量的更新准则,基于优化准则算法用MSC.Nastran的Direct Matrix Abstraction Program语言编制了通用的阻尼材料拓扑优化程序。以一铝板-声腔耦合系统为对象,以结构一阶弯曲模态阻尼比最大为目标,利用该拓扑优化程序和有限元分析方法对铝板上的阻尼材料进行优化布置,并用试验进行了验证。把铝板全阻尼处理和拓扑优化后部分阻尼处理的降噪效果进行对比,在仿真环境中,参考点处声压分别下降了110.6Pa和107.7Pa,在实验条件下,参考点处声压分别下降了22.47Pa和20.91Pa,从而验证了优化方法的有效性。 相似文献
13.
自由阻尼层结构阻尼材料配置优化的拓扑敏度法 总被引:8,自引:0,他引:8
提出阻尼胞单元和阻尼拓扑敏度等概念,建立了基于阻尼拓扑敏度综合评价的阻尼材料拓扑优化准则,并用于自由阻尼层结构振动控制中阻尼材料的配置优化。建立待控结构阻尼材料布局的拓扑基结构,计算各单元的阻尼拓扑敏度。再建立考虑重量目标及结构频响峰值约束的阻尼材料配置拓扑优化模型。根据所提出的阻尼材料拓扑优化准则,求解上述配置优化问题,确定阈值和各单元拓扑值。并用若干典型结构算例,验证所提出方法的正确性,讨论了阻尼材料布局拓扑基结构的规模与优化效率的关系。 相似文献
14.
提出一种多工况应力约束下格栅结构的拓扑优化方法。优化目标结构是由无限细无限密的梁(或肋)构成的类格栅连续体(或加肋板)。采用正交异性增强复合材料模型模拟该类格栅连续体(或加肋板)的本构关系。以梁在结点处的密度和方向作为设计变量。根据有限元分析结果,采用满应力准则法优化各单工况下材料分布。按照多工况下材料的方向刚度与各单工况下材料的方向刚度最大值的差值最小为原则建立多工况下梁(或肋)的拓扑优化分布。经过少量迭代就可以建立优化的材料连续分布场。最后以3个算例演示拓扑优化的过程,并给出结点处梁的密度和方向分布。 相似文献
15.
16.
17.
18.
19.
20.
构造内六角蜂窝胞元构成的负泊松比超材料,将其作为双层板间的连接结构,基于有限元法和边界元法,对含负泊松比超材料肋板的双层板结构开展了声振分析。分析了内六角蜂窝负泊松比胞元几何特征与力学性能,设计含负泊松比肋板的双层板对其振动进行求解,并分析了胞元填充阻尼对振动的影响,结果表明双层板下面板响应相比上面板有明显衰减。控制结构总质量不变,通过调整负泊松比肋板的宽度与厚度,实现胞元等效模量的变化,进而改变肋板刚度,进行振动和辐射噪声计算。结果表明:与平板连接的双层板相比,含负泊松比肋板的双层板对振动能量有良好的吸收和衰减功能,能更好地降低面板的振动响应与辐射噪声;负泊松比肋板的板厚越小,层间结构的等效模量越低,振动与辐射声功率也越低。 相似文献