共查询到18条相似文献,搜索用时 62 毫秒
1.
验证码是目前大部分网站用来防止批量注册、刷票等恶意操作的图灵测试手段.为了帮助开发者设计出更缜密的安全策略,将生成的5000张混合英数的不定长验证码作为训练集,基于PyTorch学习框架,使用卷积循环神经网络来训练模型,CTC算法对标签进行对齐,实现对不定长验证码的识别.实验表明,最终该模型对不定长验证码的识别准确率达... 相似文献
2.
3.
手势识别是人机交互,智能语义识别和远程人机 交流领域的热门研究课题。目前基于 视觉的手势识别问题仍是研究的难点,在多变背景下的手势姿态识别仍然存在较大问题。近 年来,随着深度神经网络技术的快速发展,利用网络自主学习的方法来提取手势姿态有关特 征得到了广泛关注。由于卷积神经网络具有较强的学习能力和个体特征的表达能力,本文针 对传统手势识别算法精度低,鲁棒性差的问题,提出了基于卷积神经网络的TensorFlow框架 下加入扁平卷积模块的FD-CNN网络手势识别算法。在预处理数据集后,基于FD-CNN网络的 手 势识别方法可以直接将预处理后的图像输入网络进行训练,最终输出测试结果的识别精度为 99.0%。与传统方法和经典卷积神经网络方法相比,本文方法提高了 网 络系统对样本数据的多样性和复杂性的有效识别,具有较高的识别率和较好的鲁棒性效果。 相似文献
4.
人类行为识别作为视频分类中的重要问题,成为计算机视觉中的热门话题.由于卷积神经网络(CNN)的几何结构固定统一,这将会使得其几何变形建模受限,使得行为识别网络难以鲁棒性的识别行为类别.本文提出了一种融入可形变卷积的行为识别网络模型.首先,引入可形变卷积,构建了一种可协同学习空间外观和时间运动线索的模块,该模块分别学习视... 相似文献
5.
《电子技术与软件工程》2017,(3)
微表情是一种极为短暂的面部表情,当人们想要掩饰内心的真实情感时,就会不自觉的流露出来。由于微表情的持续时间短,动作幅度小等特点,检测和识别微表情就变得尤为困难。为了解决传统图像识别的方法的识别率低和预处理复杂等缺点,本文提出了采用深度神经网络的方法来对微表情进行识别。该深度神经网络由卷积神经网络(CNN)和长短时记忆型(LSTM)递归神经网络组合而成,CNN层负责提取微表情的静态图像特征,LSTM层将提取到的卷积特征进行整合,而得到这些特征在时域上的信息,进而对这些信息进行分类训练。在CASM2数据集下,该方法对5类表情的识别率比传统方法高。 相似文献
6.
为提高非合作通信系统的调制方式识别准确率,提出了一种基于并联门控循环单元(GatedCycle Unit,GRU)神经网络和卷积神经网络(Convolutional Neural Network,CNN)的数字通信信号识别方法.根据调制信号的特性,将笛卡尔坐标下的原始数据转换到极坐标下,同时求原始数据的自相关序列,作为输入数据分别送入GRU和CNN网络中.对含BPSK、QPSK、8PSK、π/4-DQPSK以及四类QAM调制信号集合进行的实测信号实验结果表明,所提方法在低信噪比下能取得较好的识别性能,在0 dB时平均识别率接近90%. 相似文献
7.
本文提出了利用图卷积神经网络来进行行人匹配,图的形式在刻画匹配对象时往往具有更为灵活和丰富的表达能力,图结构可以更好地表达时空与位置信息,实现从低层像素级到高层语义体级对图像进行描述,对于遮挡的行人重识别问题有更好的鲁棒性。 相似文献
8.
徐奇 《电子技术与软件工程》2022,(9):190-193
本文针对传统脱机手写体汉字识别特征提取非常困难的问题,文章在GoogLeNet网络的基础上搭建了一个适合脱机手写体汉字识别的卷积神经网络。文章首先介绍了卷积神经网络的基本原理和GoogLeNet网络中Inception模块的特点,然后通过激活函数,批量归一化,加入注意力机制等方法对网络进行优化。实验结果表明,改进后的神经网络准确率达到98.1%,相比于AlexNet,Xinception等卷积神经网络模型的识别准确率有明显的提高。 相似文献
9.
基于实现小样本数据集下手势识别的目的,采用了深度卷积神经网络GoogLeNet模型以及PNN神经网络进行分类,同时结合了迁移学习的方法将深度学习模型进行迁移而构建所用模型.用公共数据集Keck Gesture进行实验,通过对数据集图像进行简单的图像预处理,使得图像特征更为明显,将预处理后的图像作为网络输入进行手势识别实... 相似文献
11.
在日常的沟通与交流过程中,运用面部表情可以促使沟通交流变得更加顺畅,因此对于人类而言,进行面部表情的解读也是获取相关沟通交流内容的重要程序。随着科学技术的不断发展,人工智能在日常人类交流沟通中运用的越发广泛,因此面部表情人工智能识别这一项技术的发展与创新也更加受到关注。文章将对卷积神经网络的人脸表情识别技术进行深入的研究与探析。 相似文献
12.
由于浅层卷积神经网络(convolutional neural network,CNN)模型感受野的限制,无法捕获远距离特征,在高光谱图像 (hyperspectral image,HSI) 分类问题中无法充分利用图像空间-光谱信息,很难获得较高精度的分类结果。针对上述问题,本文提出了一种基于卷积神经网络与注意力机制的模型(model based on convolutional neural network and attention mechanism,CNNAM),该模型利用CA (coordinate attention)对图像通道数据进行位置编码,并利用以自注意力机制为核心架构的Transformer模块对其进行远距离特征提取以解决CNN感受野的限制问题。CNNAM在Indian Pines和Salinas两个数据集上得到的总体分类精度分别为97.63%和99.34%,对比于其他模型,本文提出的模型表现出更好的分类性能。另外,本文以是否结合CA为参考进行了消融实验,并证明了CA在CNNAM中发挥重要作用。实验证明将传统CNN与注意力机制相结合可以在HSI分类问题中获得更高的分类精度。 相似文献
13.
基于卷积神经网络的调制样式识别研究 总被引:3,自引:0,他引:3
自动调制样式识别分类是解调前的重要步骤,在频谱管理、认知无线电、智能调制解调器、监视和干扰识别等许多应用中发挥着重要作用。深度学习具有强大的分类能力,基于深度学习中的卷积神经网络,将映射成星座图的具有不同调制样式的通信信号馈送进神经网络,从而达到通信信号调试样式识别分类的目的。基于实验目的,提出一种改进的卷积神经网络结构可实现对七种不同的调制样式的分类,在信噪比≥5dB时,识别率可达97.99%,信噪比≥9dB时,识别率可达100%。 相似文献
14.
15.
针对非合作接收条件下信号的调制识别问题,提出了一种基于循环谱特征和深度卷积神经网络的自动调制分类算法。该算法首先利用二值化、形态学操作等技术对循环谱数据集预处理,提高网络泛化能力;然后将数据集输入到卷积神经网络模型中,经过网络的特征提取实现分类识别。在网络中添加残差块网络增大感受野,提高特征提取能力。采用Dropout、优化函数等技术优化网络结构,防止训练过拟合。仿真结果表示,与传统方法和现有的一些深度学习调制识别方法相比,该算法在低信噪比条件下有更高的准确率,具有明显的抗噪声优势,是一个有效的调制识别算法。 相似文献
16.
人耳特征具有良好的唯一性与稳定性等特点,近年来被广泛应用于身份识别领域。针对人耳采集易受头发、耳饰等物品遮挡问题,本文提出了一种基于ERNet的人耳识别方法。该方法在IResNet网络的基础上,引入改进的SE模块,通过融合最大池化与均值池化的统计特性,增强身份相关特征的表示,抑制非相关特征的影响,以此解决在非受控环境下由于遮挡原因造成的识别困难问题。大量实验结果表明,相比较于原网络,改进后的方法识别性能提高较为明显。在同等遮挡条件下,本文所提出的模型具有较好的鲁棒性能。 相似文献
17.
将卷积神经网络用于CT、PET、PET/CT三种模态的医学影像分类识别,为医院统一存储管理影像数据和医护人员快速检索提供便利.首先探讨卷积神经网络对于PET/CT多种模态图像识别的可行性,其次探讨模型参数(迭代次数、批量大小)对网络识别率和训练时间的影响,然后改变CNN模型结构,探讨网络层数、特征图数量和卷积核大小对网络训练和分类效果的影响.实验表明:卷积神经网络对于PET/CT多模态图像识别取得了良好的效果,针对特定问题需要综合图像大小和信息的复杂程度构建最优的CNN模型,在保证高识别率的同时,可以选择合适的参数降低时间复杂度. 相似文献
18.
提出一种神经网络算法实现室内可见光信道模型,解决Lambert模型难以计算室内可见光信道的噪声和误差问题。针对指纹库数据量大、难以采集和训练参数多导致迭代速度慢的问题,提出使用生成式对抗网络(generative adversarial network,GAN)生成仿真数据集融合原有的稀疏指纹库,生成满足训练要求数量的指纹库;使用一维的卷积神经网络(convolutional neural network, CNN)提取数据特征,降低训练参数,提高迭代速度。在室内5 m×5 m×3 m环境下采集稀疏指纹库,分别用反向传播 神经网络(back propagation netural network, BPNN)和一维CNN室内可见光信道模型进行对比。仿真结果表明:使用GAN生成指纹库的平均绝对误差为0.04,对数据量增广300%;在同一指纹库下,BPNN信道模型误差为3.81,迭代500次收敛;而CNN信道模型误差为0.79,迭代100次收敛。本文提出的GAN指纹库融合CNN的可见光信道模型具有精度高、误差小、速度快、泛化性强等优点,为室内可见光信道模型提供新的研究方案。 相似文献