首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
轨道不平顺是诱发车-桥系统耦合振动的主要激励源之一,探明系统耦合振动不平顺敏感波长,对线路管理具有重要参考价值。首先,建立了高速磁浮列车-轨道梁耦合系统空间模型,其中磁浮列车被模拟为具有537个自由度的多体动力学模型,轨道梁被模拟为空间有限元模型,两者之间通过基于比例-微分(proportional-differentiation, PD)控制理论的磁轨关系耦合。其次,以上海高速磁浮为研究背景,选用5车编组列车驶过20跨简支梁桥为计算条件,通过与实测结果对比,验证了模型的正确性。最后,考虑轨道谐波不平顺激励,探讨了不同方向的轨道不平顺组合、不同轨道不平顺幅值和不同车速对列车和桥梁动力响应敏感波长及列车运行平稳性的影响。结果表明:磁浮列车-桥系统横向振动和竖向振动耦合性很弱;在设计车速430 km/h下,车体竖向、侧滚和点头加速度敏感波长分别为140~180 m、60~100 m和120~160 m,车体横向和摇头加速度敏感波长大于200 m;当波长为80、105、115、140和160 m时,会分别引发车体侧滚、摇头、横向、点头和竖向方向的共振;车体和主梁的响应幅值与轨道不平顺幅值基本...  相似文献   

2.
不平顺条件下高速铁路轨道振动的解析研究   总被引:4,自引:0,他引:4  
为了分析不平顺条件下高速铁路轨道结构振动,推导了移动车辆在轮对处和轨道结构在轮轨接触点处的柔度矩阵,考虑移动轴荷载和轨道不平顺,建立了移动车辆-轨道垂向耦合振动的解析模型.模型中,移动车辆考虑为弹簧和阻尼器连接的多刚体系统;有碴轨道结构模拟为连续弹性3层梁;轮轨间考虑为线性赫兹接触.算例分析了单台TGV高速动车引起的有碴轨道结构振动,得到轨道不平顺引起的动态轮轨力和轨道各部分的最大振动加速度,研究了列车速度、轨道不平顺以及轨下垫板及扣件、道床和路基等轨下基础刚度对轨道振动的影响.计算表明:随着列车速度和轨道不平顺的增加,轨道结构的振动响应不断增大;轨下基础刚度对轨枕和道床的振动影响较大,对钢轨振动的影响较小.  相似文献   

3.
轨道不平顺不同波长成分对列车运行平稳性、舒适性影响程度不同。为了更有效判别轨道的潜在病害,提出一种基于带通滤波的轨道不平顺敏感波长计权评价指标,即轨道加权质量指数(F-TWQI);基于车辆-轨道耦合系统动力响应分析确定敏感波长权重曲线,按1/3倍频程对轨道不平顺进行频域划分并设计相应的带通滤波器,对每个频带的轨道不平顺波形分量的标准差赋权,求和得F-TWQI;以轨检车实测高低不平顺数据为例,对比分析TQI、基于EMD的轨道加权质量指数E-TWQI和F-TWQI与UIC513的相关系数。结果表明:三者相关系数分别处于0.60~0.70、0.70~0.75、0.80~0.85,对敏感波长计权更能反映轨道实际状态;F-TWQI能避免E-TWQI端点效应的局限性,计算效率得到极大地提升,为快速、准确分析铁路工务的潜在安全隐患提供了一种新的方法。  相似文献   

4.
应用有限元对某SUV轿车车架进行模态分析,在此基础上,基于多体动力学理论应用ADAMS/Car软件建立考虑车架柔性的刚柔耦合整车多体动力学模型。对车身质心垂向加速度、悬架动行程和轮胎动位移进行分析,并与多刚体模型的仿真结果进行比较。研究结果表明:考虑车架柔性的刚柔耦合模型的车身垂直加速度功率谱密度比刚体模型降低14.7 %,悬架动行程增大27.1 %,轮胎动行程减小14.8 %;车架柔性对车身主频影响很小,但对车身20 Hz以上振动频谱影响较大。  相似文献   

5.
轮轨动态输入激励直接影响车辆-轨道耦合模型的计算结果.目前在地铁列车环境振动振源研究中,大多只考虑了轨道不平顺的激励而忽略了车轮不圆顺的影响.为了构建地铁轮轨耦合不平顺激励、综合分析轨道不平顺以及车轮、钢轨的磨耗状态对轨道动力响应的影响,对一列地铁列车进行了车轮不圆顺的现场测试,同时对一段区间隧道内的轨道不平顺和钢轨粗...  相似文献   

6.
基于刚柔耦合仿真的集装箱车体振动疲劳分析   总被引:8,自引:2,他引:6       下载免费PDF全文
为了分析结构振动对疲劳寿命的影响程度,提出了一种基于刚柔耦合仿真的振动疲劳分析方法。利用柔性体接口处理技术对策(ITTS),建立刚柔耦合系统模型,其中,柔性体在动约束作用下能够形成具有相关模态振动特征的弹性振动。应用基于子结构模态综合法(CMS)的动应力恢复方式,进行危险点动应力与模态振动的相关性分析和动应力变化的幅频统计对比,以确定疲劳性质及振动影响程度。结合集装箱平车垂向加速度偏大问题,利用两种柔性车体模型:模态质量和附着质量车体模型,确定了车体在斜楔摩擦粘-滑振动作用下形成了具有2阶垂向弯曲模态振动特征的弹性振动。根据危险点动应力的模态相关性分析和幅频统计对比,集装箱地脚的垂向纵向约束力是造成大幅值循环应力出现的主要原因之一,而结构振动对疲劳寿命的影响程度约为(20-25)%。  相似文献   

7.
悬浮隧道是悬浮在水下一定深度的新型封闭式交通结构物。为分析轨道不平顺激励下水中悬浮隧道车隧耦合振动特性,将行驶车辆和悬浮隧道分别抽象为弹簧-质量车和离散弹性支撑梁,并结合Morison方程考虑流体附加惯性效应和阻尼效应,建立悬浮隧道车隧耦合振动微分控制方程。基于MATLAB采用四阶龙格-库塔法求解悬浮隧道在轨道不平顺激励下的车隧耦合振动响应。计算结果表明:悬浮隧道车隧耦合振动同时受到轨道不平顺和流体作用效应的影响。基于数值计算结果,考虑流体作用效应的结构位移响应有3%左右的增加;而在轨道不平顺激励下,考虑耦合振动的结构位移响应平均有5%~10%的增加。其次,锚索刚度对在轨道不平顺激励下结构位移响应具有抑制作用。具有较大锚索刚度的悬浮隧道对轨道不平顺更敏感,局部振动更剧烈。再者,快速行驶车辆在高干扰轨道激励下使耦合系统发生更强烈的振动,可通过控制车辆行驶轨道的平顺度以降低高速通行要求下产生的车隧耦合振动影响。  相似文献   

8.
采用半解析方法研究了层状饱和地基-轨道-列车耦合系统的动力响应问题。层状饱和地基由任意水平饱和土层和下卧饱和半空间组成,轨道采用以无限长欧拉梁模拟的钢轨、连续质量块模拟的轨枕和Cosserat模型模拟的道砟组成的三层系统,列车模拟为弹簧和阻尼元件连接的多刚体系统。振动输入由钢轨的竖向不平顺提供。通过地基表面轨道中心处竖向位移与道砟位移相等实现层状饱和地基和轨道的耦合,通过在车轮与钢轨间引入Hertizian接触弹簧来实现轨道与列车的耦合,首先求得频率-波数域内解答,然后通过Fourier逆变换求得时间-空间域内振动响应。文中验证了方法的正确性,并进行了数值计算分析,研究表明钢轨不平顺引起的列车动荷载振动频率较低时,随着列车运行速度的增大地基表面位移幅值逐渐增大;振动频率较高时,列车运行速度对位移幅值峰值的影响不明显,但列车驶过后地基的振动明显增大,振动时间变长。  相似文献   

9.
讨论铁路轨道之间的平滑联接问题,设计出几种能使列车车轮在有缝线路的轨道伸缩缝口处实现平滑无振动过度的联接结构。  相似文献   

10.
考虑轨道随机不平顺影响,建立了移动车辆-有砟轨道-路基-层状地基垂向耦合振动解析模型。模型中,将虚拟激励法和解析的波数-频率域法有效结合起来,直接由轨道不平顺的功率谱密度得到准确的动态轮轨力功率谱。将移动列车轴荷载和轨道随机不平顺引起的动态轮轨力考虑为傅里叶级数表示的谐波叠加形式,根据线性系统叠加原理,求得地基动力响应功率谱估计值与时程结果。利用在波数域内直接计算位移频谱、划分合适谐波区间等技术,显著提高了随机振动响应功率谱和时程的计算效率。对比分析了地基表面测点垂向振动加速度时程与频谱的理论计算与现场实测结果,证明了本文模型的合理性。  相似文献   

11.
为研究轨道不平顺激扰下机车传动齿轮的振动特性,采用Simpack软件建立机车动力学模型以仿真获取轨道对轮对的反作用力矩,并建立机车齿轮传动系统的集中参数动力学模型。以齿轮时变啮合刚度为内部激励、轨道对轮对的反作用力矩为外部激励,仿真分析机车传动齿轮在变载荷下的振动特性。结果表明,轨道不平顺激扰下齿轮的低频位移响应与载荷波动趋势一致;故障齿轮的故障特征频率与啮合频率处均存在以载荷主频为间隔的边频带,健康齿轮的啮合频率处也存在该边频带,这将对故障的诊断造成干扰。并且当载荷主频与故障特征频率或啮合频率一致时系统会发生共振现象,将严重影响机车运行的平稳性和安全性。研究结论揭示了轨道不平顺激扰对机车齿轮传动系统的影响机理,可为机车齿轮动力学研究与机车齿轮箱故障诊断工作提供理论基础。  相似文献   

12.
无咋轨道系统的轨道平顺性调整原理以及步骤,轨道平顺性的分析和调整方案的拟定。  相似文献   

13.
作为实现空间敏感载荷精密定位的关键部件,超精密驱动系统不仅需要具备亚毫米级的输出行程,同时还应达到微纳米级的分辨精度。提出了一种利用柔顺放大机构与智能材料作动器联合驱动的方案。对柔顺放大机构在传动过程中可能因微振动而影响输出精度的问题,利用伪刚体模型法、假设模态法和拉格朗日方程构建了柔顺放大机构的刚柔耦合动力学模型;并基于该模型仿真研究了作动频带内柔顺放大机构的动力学响应特性。结果表明:随着驱动频率的增加,放大机构弹性振动加剧;但在整个作动频带内,弹性振动与刚体运动的幅值比在5 Hz驱动频率下仅为0.61%;进一步结合试验测试证明了所设计的驱动系统可以忽略柔顺放大机构产生的弹性振动的结论,表明该驱动系统具备超精密定位的潜力。  相似文献   

14.
无砟轨道不平顺作为线路服役状态的直接表征,一直是高速铁路检查与维修作业的核心。为了深刻而有效地掌握无砟轨道不平顺的时空分布特征,从分形几何的基础物理含义出发,确定轨道不平顺的分形特征,比选轨道不平顺分形维数的计算方法,通过分析典型高速铁路无砟轨道不平顺的累计检测数据,讨论分形维数进行轨道区段质量管理的可行性与合理性。结果表明:轨道不平顺具有典型自相似性和标度不变性的分形特征,各种分形维数方法进行轨道不平顺计算的结果具有显著差异性,变差法计算的精度、鲁棒性好,适合进行轨道不平顺分形维数计算;分形维数可以有效地表征线路轨道服役状态逐渐恶化的趋势,受线路作业维修干扰较少。建议结合线路具体养修条件,进一步对不同线路条件下轨道不平顺分形维数特征进行深入研究。  相似文献   

15.
对地铁钢轨振动特性和支座反力的探究是研究地铁引起环境振动的关键。为研究整体道床式轨道的振动特性,基于二维车辆–轨道耦合动力学数值分析法和三维有限元法对不同车速、不同轨道不平顺激励工况下的钢轨垂向振动加速度、振动速度、钢轨位移、支座反力和时域轮轨力进行仿真计算。结果表明:车速一定时,由同种方法计算得到的不同轨道不平顺激励下钢轨最大的垂向位移、支座反力在数值上的差异在5 %以内;同种轨道不平顺谱激励下,钢轨最大的垂向振动加速度、振动速度、垂向位移、支座反力以及时域轮轨力波动范围随车速增大而增大;在钢轨最大垂向振动速度、垂向位移和支座反力方面,基于二维数值分析模型的计算结果大于三维有限元模型的计算结果。根据两种方法计算所得的最大支座反力分别占单个车轮静载的40.46 %和37.44 %;同一车速工况下,钢轨最大的垂向振动加速度、垂向速度、垂向位移、最大支座反力以及时域轮轨力的最大变化范围均在美国五级谱激励条件下取得。  相似文献   

16.
对地铁钢轨振动特性和支座反力的探究是研究地铁引起环境振动的关键。为研究整体道床式轨道的振动特性,基于二维车辆–轨道耦合动力学数值分析法和三维有限元法对不同车速、不同轨道不平顺激励工况下的钢轨垂向振动加速度、振动速度、钢轨位移、支座反力和时域轮轨力进行仿真计算。结果表明:车速一定时,由同种方法计算得到的不同轨道不平顺激励下钢轨最大的垂向位移、支座反力在数值上的差异在5 %以内;同种轨道不平顺谱激励下,钢轨最大的垂向振动加速度、振动速度、垂向位移、支座反力以及时域轮轨力波动范围随车速增大而增大;在钢轨最大垂向振动速度、垂向位移和支座反力方面,基于二维数值分析模型的计算结果大于三维有限元模型的计算结果。根据两种方法计算所得的最大支座反力分别占单个车轮静载的40.46 %和37.44 %;同一车速工况下,钢轨最大的垂向振动加速度、垂向速度、垂向位移、最大支座反力以及时域轮轨力的最大变化范围均在美国五级谱激励条件下取得。  相似文献   

17.
研究轨道不平顺,对于车辆、线路的设计以及轨道状态的科学评定都具有重要意义。通过利用功能强大的LabVIEW虚拟仪器开发平台,进行LabVIEW和MATLAB的混合编程设计的轨道长波不平顺性检测系统,能有效地从加速度信号中提取出了轨道的长波不平顺特征。该系统操作简单灵活,运行稳定可靠。通过实测数据的分析,证明该系统的研制是成功,具有较高的实用价值。  相似文献   

18.
客运专线轨道不平顺功率谱分析   总被引:2,自引:0,他引:2  
轨道不平顺是车辆振动的主要激扰源,也是限制列车最高运行速度的主要因素之一,直接关系到列车运行的平稳性、安全性和舒适性。文章以秦沈客运专线轨检车实测轨道不平顺数据为统计样本,基于样本平稳性检验,采用FFT方法进行样本空间的谱估计,并由MATLAB编程得到轨道不平顺谱密度。基于轨道不平顺样本的总体平均,得出了谱密度频率平滑曲线和谱密度曲线拟合表达式,并与我国重载提速干线的谱密度曲线进行了对比分析。在此基础上,对秦沈客运专线的轨道状态进行了评估。  相似文献   

19.
为了在试验台上模拟列车实际运行时的振动环境,实现在室内测试车辆系统整体或零部件的振动响应,考虑将轨道几何不平顺在6自由度振动试验台上复现.结合轨道几何不平顺的特点及振动试验台的自身结构,研究了该试验台的运动控制方法以及在该试验台上复现轨道几何不平顺的方法;通过搭建试验台全尺寸虚拟样机模型,对实测的武广高速铁路不平顺信号...  相似文献   

20.
针对刚柔耦合机械臂动力学模型的非线性、强耦合、时变问题,提出一种滑模预测控制方法可有效降低柔性臂的末端振动,同时提高末端轨迹跟踪性能和运动精度。首先采用输出重定义法得到柔性臂末端的观测量,将内动态子系统转换为零动态子系统,抑制柔性臂末端的振动;预测作为跟踪误差及其高阶导数组合的滑模面,将滑模面引入到预测控制的二次性能指标中,根据预测模型预估系统未来的输出,消除末端控制误差,并通过稳定性分析论证控制器的稳定性。最后通过仿真和实验验证该方法的有效性,证明其可提高刚柔耦合机械臂的运动精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号