共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国测试》2019,(10):10-15
针对振动信号的非线性、非平稳性和早期故障特征信号难以提取的特点,提出一种基于改进经验小波变换的故障特征提取方法。通过包络分析和对包络曲线进行阈值分割修整的方法来确定经验小波变换分解的模态数和频率边界,解决传统经验小波变换需要预先设置分解模态数和难以对信号频谱进行适当分割问题,以实现对振动信号故障信息更准确的描述。实验表明,该频谱分割方法能够有效检测信号最佳模态分解数,使得信号的频谱分割更为容易、可靠。相比传统EWT和EMD,改进经验小波变换的滚动轴承内圈、外圈Hilbert变换时频图对振动信号的故障相关特征描述更为清晰,在滚动轴承故障特征提取方面表现更为优越。 相似文献
2.
3.
循环平稳分析是滚动轴承故障特征提取的重要方法之一,但在用于滚动轴承故障特征提取时,存在因干扰成分较强而不能有效提取轴承故障特征的问题。为能在干扰环境中有效提取滚动轴承故障信息,基于循环谱分析提出一种鲁棒性滚动轴承故障特征提取方法。首先通过离散随机分离(discrete random separation,DRS)分析分离信号中的周期分量,提取其随机分量;随后用Teager能量算子(Teager energy operator,TEO)提取随机分量的振动能量序列;再对该序列进行快速谱相关(fast spectral correlation,Fast-SC)分析,采用基于能量熵的能量差异系数评价各循环频率(阶次)切片的能量强度;最终经熵加权降低无关干扰成分影响以有效提取故障特征。通过传统的快速谱峭度、快速谱相关和基于总变差去噪的快速谱相关分析方法与该方法对美国智能维护系统中心的滚动轴承振动数据以及实测齿轮箱复合故障试验信号进行对比分析,验证了该方法在滚动轴承故障诊断应用中的优势。 相似文献
4.
针对变分模态分解(variational mode decomposition,VMD)中模态数K和惩罚因子α无法自适应确定的问题,提出了基于快速变分模态分解(fast VMD,FVMD)的滚动轴承故障特征提取方法。首先,利用频谱趋势分割方法对滚动轴承振动信号进行分析,确定频谱趋势分割边界,进而自适应确定VMD的分解模态数K和惩罚因子α、模态初始中心频率ω;其次,根据参数K、α、ω,完成原始振动信号的自适应分解,并基于有效权重峭度准则提取有效本征模态函数(intrinsic mode function,IMF)分量;最后,利用希尔伯特包络解调计算有效IMF分量重构信号的包络频谱图,完成滚动轴承故障特征的提取。使用仿真信号、美国凯斯西储大学(Case Western Reserve University,CWRU)和美国航空航天局(National Aeronautics and Space Administration,NASA)的滚动轴承数据完成所提方法与传统VMD方法的对比试验。结果表明,所提方法能够自适应确定VMD的分解模态数K和惩罚因子α,提高VMD的计算效率,同时有效提取到滚动轴承的故障特征频率,证明了所提方法的有效性和可行性。 相似文献
5.
6.
压缩感知可有效降低机械状态监测信号的数据存储和传输压力,而现有压缩感知方法在故障诊断的应用中存在压缩效率低下、信号重构过程缓慢等问题。本文利用自编码网络与压缩感知的对应关系,提出了一种基于深度卷积测量网络的滚动轴承压缩域故障特征提取方法。针对无噪声的故障信号样本难以获取的问题,提出一种利用故障机理构建数据集的方法,利用该仿真数据集训练得到的模型适用于不同工况下的实测轴承信号。构造网络层数由所需要的信号压缩率确定、隐含层与原信号的频率呈对应关系的深度卷积去噪自编码网络。截取训练完备的编码子网络(即深度卷积测量网络)代替传统的观测矩阵对滚动轴承振动信号进行压缩测量,实现压缩域的故障特征提取。仿真分析验证了所提数据集构造方法及压缩域特征提取方法的有效性。滚动轴承实验信号分析进一步验证了采用所提方法训练得到的深度卷积测量网络具有很好的泛化性,且能够在压缩率远低于传统压缩感知方法的情况下有效地提取轴承故障特征成分并进行故障诊断。 相似文献
7.
共振解调方法是滚动轴承故障特征提取和故障诊断中最为常用的一种方法。然而传统的共振解调技术存在带通滤波参数(中心频率和滤波带宽)需要人工进行预先确定,其具有很大的偶然性、局限性等缺陷。本文作者将快速Kurtogram算法用于共振解调技术带通滤波器参数的确定中,并结合共振解调技术成功运用于滚动轴承的故障特征提取,弥补了传统共振解调方法需要人工干预进行带通滤波参数确定的不足,并分别进行仿真和实验来验证该方法的有效性。 相似文献
8.
基于TVD和MSB的滚动轴承故障特征提取 总被引:1,自引:0,他引:1
《振动与冲击》2019,(8)
针对滚动轴承故障冲击信号周期性强且易被背景噪声淹没的特点,提出一种基于二阶全变分去噪(TVD)与调制信号双谱(MSB)的滚动轴承故障诊断方法。该方法利用二阶TVD处理故障信号,包络谱相关峭度被用于确定滤波过程中的参数λ;为进一步抑制噪声干扰,对滤波后信号进行MSB分析,选取故障特征频率占比最大的5个切片进行平均得到复合切片谱,提取出轴承故障特征;通过分析复合切片谱,判断轴承故障类型。将该方法运用到轴承故障仿真和实验信号。结果表明,所提出的方法能够有效抑制强背景噪声的干扰,实现了滚动轴承的故障诊断,证明了方法的有效性。 相似文献
9.
10.
针对滚动轴承故障特征往往被强背景噪声淹没的特点,提出一种基于改进经验模态分解(Empirical Mode Decomposition,EMD)与滑动峰态算法的滚动轴承故障特征提取方法。首先利用EMD方法分解原故障信号得到一组平稳固有模态分量(Intrinsic Mode Function,IMF)。然后采用互信息和广义相关系数筛选法消除传统EMD分解结果中虚假分量,并运用滑动峰态算法对真实IMF分量处理得到滑动峰态时间序列。最后计算滑动峰态序列频谱提取故障特征频率。滚动轴承的实例研究结果表明:该方法能够有效提取滚动轴承故障特征,可以取得比直接滑动峰态算法和传统包络解调分析更好的效果。 相似文献
11.
通过进行带机匣测点的滚动轴承故障模拟实验,获取滚动轴承在故障状态条件下,轴承座测点和机匣测点的振动数据。分析结果显示,相对于轴承座,机匣上的振动信号成分复杂,轴承故障特征不明显,直接进行包络解调无法提取故障特征。通过奇异值分解(singular value decomposition,SVD),差分谱中各峰值处奇异值可以表征不同成分的信号。当轴承故障信号微弱时,第一个峰值处的奇异值重构信号往往代表转频及其调制信号分量,选取该靠后峰值处的奇异值进行信号重构可以有效提取轴承故障特征信号。研究内容为实际基于机匣测点信号的航空发动机滚动轴承故障特征提取提供了一种新的方法。 相似文献
12.
针对时域非平稳振动信号模式混叠、信噪比低,以及传统稀疏表示算法模型复杂、优化求解算法难以确定,导致故障特征提取难的问题,提出了频域组稀疏和群桥约束改进迭代收缩阈值优化的故障特征提取方法(Group Sparse Representation in Frequency Domain,GSRF)。将振动信号转换至频域并对变量分组,构造施加群桥约束的最小二乘回归模型,准确筛选冲击相关变量;引入迭代重加权系数简化方程,以软阈值收缩优化求解频域稀疏信号;对重构的时域稀疏信号进行包络频谱分析提取故障特征。试验结果表明,提出的频域组稀疏算法优于传统的结合L21范数约束的组稀疏索套方法,可有效提取微弱故障特征,实现稀疏域下的轴承故障诊断。 相似文献
13.
目的 针对包装机械设备中滚动轴承应用场景多且有效故障数据难采集而导致的智能诊断方法诊断准确率较低的问题,提出一种基于数据增强的滚动轴承智能诊断方法.方法 首先根据轴承振动信号的故障特征,提出一种数据增强方法,有效扩充训练数据样本多样性.然后采用卷积神经网络对原始样本和增强样本进行故障诊断训练,从而大幅度提高诊断模型的诊断性能.为了验证所提方法的有效性,建立滚动轴承故障试验台并采集轴承故障数据.结果 实验结果表明,在标签训练样本不充足的情况下,提出的方法与不使用数据增强方法相比,模型在诊断准确率方面取得了较大的提高,能够准确地识别各类轴承故障.结论 该方法实现了准确地对稀缺标记样本下滚动轴承故障的诊断,为保证包装机械滚动轴承故障诊断的诊断精度提供了可靠的方法. 相似文献
14.
考虑到实际工程环境中噪声对故障特征提取的影响,提出了基于量子遗传算法(QGA)优化广义S变换的滚动轴承故障特征提取方法。该方法以时频分布集中程度为评价标准,首先采用量子遗传算法自适应地选取广义S变换中最优窗口控制参数,然后提取信号变换后复时频矩阵的模向量作为滚动轴承故障特征向量。利用该方法提取的滚动轴承故障特征与其它故障特征进行故障识别对比研究,实验结果表明该方法能够更准确地提取出故障特征,验证了方法的优越性。此外,对不同噪声强度背景下的滚动轴承振动信号进行故障特征提取,诊断结果进一步显示所提方法具有良好的抗噪性和健壮性。 相似文献
15.
针对滚动轴承振动信号的强非线性和非平稳特性,提出了一种基于改进集成经验模态分解(IEEMD)和调制信号双谱(MSB)分析的故障特征提取方法。将集成经验模态分解(EEMD)应用于滚动轴承的振动信号处理,将其分解成一系列的本征模态函数(IMFs);通过累计均值(MSAM)准则将IMFs自适应地分为低频IMFs和高频IMFs,其中高频IMFs采用小波阈值降噪进行处理;将降噪后的高频IMFs与低频IMFs进行重构以获取高信噪比的瞬态脉冲信号;利用MSB进一步抑制瞬态脉冲信号中的随机噪声和干扰分量,并提取信号故障特征。与谱峭度(SK)和WEEMD-MSB分析结果进行对比,验证了该方法在轴承微弱故障特征提取方面的优越性。 相似文献
16.
针对滚动轴承(rolling element bearings, REBs)早期故障振动信号冲击成分微弱,受噪声影响故障特征难以提取,提出了基于自相关和Teager能量算子增强的滚动轴承微弱故障特征提取法。利用自相关计算和经验模态分解(empirical mode decomposition, EMD),分别实现轴承振动信号整个频带随机噪声和低频噪声的抑制,突出故障冲击周期。同时,提出基于内禀模态函数(intrinsic mode function, IMF)能量比加权的互相关系数-峭度指标用于筛选最优IMF进行信号重构,强化重构信号中的故障信息。对重构信号作用Teager能量算子(Teager energy operator, TEO),得到故障冲击特征增强的瞬时能量序列,通过功率谱分析提取轴承故障特征频率。内圈故障仿真信号和滚动体故障实测信号分析表明,该方法能够有效抑制轴承振动信号噪声,对早期故障的微弱特征有显著增强作用。 相似文献
17.
基于互信息的滚动轴承故障特征选择方法 总被引:1,自引:0,他引:1
信号特征提取与优化选择是实现滚动轴承故障模式快速有效分类的关键.针对滚动轴承故障信号特征提取,采用小波分解和奇异值分解得到信号的能谱和奇异谱,并计算Shannon熵和Renyi熵两种测度下的能谱熵和奇异熵;针对特征参数集的优化选择,提出利用基于互信息的最大相关最小冗余准则(mRMR)对特征参数集进行评价,通过贪婪搜索得到特征子集序列,利用LS-SVM交叉验证各特征子集的性能,提出确定最优特征子集所包含特征数目的准则.从信号处理、特征提取、特征选择和故障分类等方面构建了滚动轴承故障诊断的完整体系,实际故障诊断表明所提出方法的有效性和优越性. 相似文献
18.
滚动轴承是机械设备中广泛使用的关键部件,其故障特征的准确提取对设备稳定运行至关重要。轴承的初始故障很微弱,容易被背景噪声掩盖,这使故障特征的提取较为困难,需要对轴承故障特征与噪声的特性进行准确刻画。针对上述问题,为了深入探究轴承故障特征及噪声在时频域中的低秩与稀疏特性及其内在关联,对轴承故障特征提取低秩稀疏分解框架下的两种代表性方法开展对比研究,以便充分利用故障特征与噪声成分的性质,为噪声干扰下的轴承故障提取方法选择提供一定的依据。利用周期性瞬态冲击信号在时频域中的稀疏与低秩特性建立矩阵分解模型,对比了Go分解(go-decomposition, Go-Dec)和非负矩阵分解(non-negative matrix factorization, NMF)两种具有代表性的分解方法,并将其应用于时频域中滚动轴承的故障特征提取。首先,基于短时傅里叶变换(short time Fourier transform, STFT)生成振动信号的时频矩阵,并揭示了轴承故障脉冲在时频域中具有的稀疏性和低秩性。利用Go-Dec和NMF两种矩阵分解方法,分解出表征故障特征的矩阵。最后,对分解的故障矩阵采用逆... 相似文献
19.
带通滤波器参数(中心频率和带宽)选取是共振解调的关键,针对快速峭度图找寻的中心频率偏大、带宽过宽的问题,提出Infogram(信息图)用于确定滤波器参数;并利用变分模态分解(Variational Mode Decomoposition,VMD)预先对信号进行重构,以减少噪声对信息图的影响,增强其应用效果。对轴承故障振动信号进行变分模态分解得到有限个模态分量,根据模态选取准则确定包含故障信息较多的模态分量进行信号重构,再应用信息图确定最佳共振频带的中心频率和带宽,并对重构信号进行带通滤波和包络谱分析,识别轴承故障特征频率。仿真分析和轴承外圈模拟故障试验验证了该方法的有效性。 相似文献
20.
针对滚动轴承故障样本稀缺、振动特征提取困难导致故障诊断准确率低的难题,提出一种基于时频增强的滚动轴承少样本故障诊断方法。首先,对滚动轴承一维振动信号进行重叠采样,利用连续小波变换对采样信号段进行时频域特征映射,构造二维时频矩阵;其次,通过深度卷积生成对抗网络对真实时频样本进行训练后,将生成时频样本加入到训练集中;然后,采用时序卷积网络融合深层次的时频域特征;最后,构建Softmax分类器输出与故障类别对应的状态。仿真实验结果表明,在仅有10个训练样本的条件下,该方法在凯斯西储大学滚动轴承数据集中的诊断准确率均值达91.00%,相较未经时频增强的方法提高了7.56%,并利用实测数据验证了时频增强方法能够显著提升少样本情形下的故障诊断准确率。 相似文献