首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-sensitivity and high-throughput mass spectrometry (MS) has become an important tool for characterizing glycopeptides. Here, we analyzed synthetic O-linked glycopeptides using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. First, we applied MALDI-quadrupole ion trap (QIT)-TOF MS, which enables collision-induced dissociation-MSn analysis for fine structural characterization. Subsequent MS/MS of sodium adduct ions selected as precursor ions yielded detailed information about the site of oligosaccharide attachment as well as the carbohydrate and amino acid sequences; however, these MS/MS spectra were very complex. To obtain easily interpretable and simple spectra, we used N-terminal protein ladder sequencing coupled with MALDI-TOF MS. From the extremely simple resulting spectra, we were able to determine the glycosylation sites, amino acid sequences, and oligosaccharide molecular weights of the glycopeptides.  相似文献   

2.
A new ion sampling interface for an electrospray ionization 3D ion trap mass spectrometer system is described. The interface uses linear rf quadrupoles as ion guides and ion traps to enhance the performance of the 3D trap. Trapping ions in the linear quadrupoles is demonstrated to improve the duty cycle of the system. Dipolar excitation of ions trapped in a linear quadrupole is used to eject unwanted ions. A resolution of ejection of up to 254 is demonstrated for protonated reserpine ions (m/z 609.3). A composite waveform with a notch in frequency space is used to eject a wide range of matrix ions and to isolate trace analyte ions in a linear quadrupole before ions are injected into the 3D trap. This is useful to overcome space charge problems in the 3D trap caused by excess matrix ions. For trace reserpine in a 500-fold molar excess of poly(propylene glycol) (PPG), it is demonstrated that the resolution and sensitivity of the 3D trap can be increased dramatically with ejection of the excess PPG matrix ions. In comparison to ejection of matrix ions in the 3D trap with a similar broad-band waveform, a 5-fold increase in sensitivity with a 7 times shorter acquisition time was achieved.  相似文献   

3.
A linear octopole trap interface for an ion mobility time-of-flight mass spectrometer has been developed for focusing and accumulating continuous beams of ions produced by electrospray ionization. The interface improves experimental efficiencies by factors of approximately 50-200 compared with an analogous configuration that utilizes a three-dimensional Paul geometry trap (Hoaglund-Hyzer, C. S.; Lee, Y. J.; Counterman, A. E.; Clemmer, D. E. Anal. Chem. 2002, 74, 992-1006). With these improvements, it is possible to record nested drift (flight) time distributions for complex mixtures in fractions of a second. We demonstrate the approach for several well-defined peptide mixtures and an assessment of the detection limits is given. Additionally, we demonstrate the utility of the approach in the field of proteomics by an on-line, three-dimensional nano-LC-ion mobility-TOF separation of tryptic peptides from the Drosophila proteome.  相似文献   

4.
An ion trap/ion mobility/quadrupole/time-of-flight mass spectrometer has been developed for the analysis of peptide mixtures. In this approach, a mixture of peptides is electrosprayed into the gas phase. The mixture of ions that is created is accumulated in an ion trap and periodically injected into a drift tube where ions separate according to differences in gas-phase ion mobilities. Upon exiting the drift tube, ions enter a quadrupole mass filter where a specific mass-to-charge (m/z) ratio can be selected prior to collisional activation in an octopole collision cell. Parent and fragment ions that exit the collision cell are analyzed using a reflectron geometry time-of-flight mass spectrometer. The overall configuration allows different species to be selected according to their mobilities and m/z ratios prior to collision-induced dissociation and final MS analysis. A key parameter in these studies is the pressure of the target gas in the collision cell. Above a critical pressure, the well-defined mobility separation degrades. The approach is demonstrated by examining a mixture of tryptic digest peptides of ubiquitin.  相似文献   

5.
An automated analytical approach is proposed for simultaneous characterization of glycan and peptide moieties in pronase-generated glycopeptides. The proposed method is based on the use of a new pronase-immobilized enzyme reactor for the on-line rapid digestion of the target glycoprotein. By coupling the bioreactor to a Hypercarb chromatographic trap column, on-line selective glycopeptide enrichment prior to normal-phase liquid chromatography-mass spectrometry was obtained. A detailed study was carried out for integration and automation of each phase of the proposed analytical procedure. On-line digestion allowed extensive cleavage of the model protein (ribonuclease B), yielding to glycopeptides with peptide moieties up to eight amino acids, carrying the Man5-Man9 N-glycans each, selectively resolved on an Amide-80 column. The use of a linear ion trap instrument resulted in efficient ion capture and led to MS3 acquisition times and spectra quality similar to those for MS2, allowing the unambiguous identification of glycan (MS2) and peptide (MS3) sequences. The proposed procedure reduces the glycoprotein analysis time from approximately 3 days, as in most of the traditional off-line methods, to approximately 1 h.  相似文献   

6.
In glycoproteomics, key structural issues, protein identification, locations of glycosylation sites, and evaluation of the glycosylation site microheterogeneity should be easily evaluated in a large number of glycoproteins, while mass spectrometry (MS) provides substantial information about individual purified glycoproteins. Considering that structural issues are elucidated by studying glycopeptides and that the tandem MS of a tryptic peptide composed of several amino acid residues is enough for protein identification, construction of an MS-based method handling tryptic glycopeptides would be of considerable benefit in research. To this end, a simple and efficient method, utilizing hydrophilic binding of carbohydrate matrixes such as cellulose and Sepharose to oligosaccharides, was successfully applied to the isolation of tryptic glycopeptides. Both peptide and oligosaccharide structures were elucidated by multiple-stage tandem MS (MS(n)) of the ions generated by matrix-assisted laser desorption/ionization (MALDI), as follows. The MALDI ion trap mass spectrum of a tryptic glycopeptide mixture from N-linked glycoproteins was composed of the [M + H]+ ions of component glycopeptides. Collision-induced dissociation (CID) of the glycopeptide [M + H]+ ion generated saccharide-spaced peaks, with an interval of, for example, 146, 162, and 203 Da, and their fragment ions corresponding to the peptide and peptide + N-acetylglucosamine (GlcNAc) species in the MS2 spectrum. The saccharide-spaced ladder served to outline oligosaccharide structures, which were then selected as precursors for subsequent MS(n) analyses. The peptide or peptide + GlcNAc ions in the MS2 spectrum or the corresponding ions abundant in the MS1 spectrum were subjected to CID for determination of peptide sequences, to identify proteins and their glycosylation sites. The strategy, isolation of glycopeptides followed by MS(n) analysis, efficiently characterized the structures of beta2-glycoprotein I with four N-glycosylation sites and was applied to an analysis of total serum glycoproteins.  相似文献   

7.
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (ultra-FAIMS) combined with mass spectrometry (MS) has been applied to the analysis of standard and tryptic peptides, derived from α-1-acid glycoprotein, using electrospray and nanoelectrospray ion sources. Singly and multiply charged peptide ions were separated in the gas phase using ultra-FAIMS and detected by ion trap and time-of-flight MS. The small compensation voltage (CV) window for the transmission of singly charged ions demonstrates the ability of ultra-FAIMS-MS to generate pseudo-peptide mass fingerprints that may be used to simplify spectra and identify proteins by database searching. Multiply charged ions required a higher CV for transmission, and ions with different amino acid sequences may be separated on the basis of their differential ion mobility. A partial separation of conformers was also observed for the doubly charged ion of bradykinin. Selection on the basis of charge state and differential mobility prior to tandem mass spectrometry facilitates peptide and protein identification by allowing precursor ions to be identified with greater selectivity, thus reducing spectral complexity and enhancing MS detection.  相似文献   

8.
An electrospray ionization, dual gate, ion mobility, quadrupole ion trap mass spectrometer (ESI-DG-IM-QIT-MS) was constructed and evaluated for its ability to select mobility-filtered ions prior to mass analysis. While modification of the common signal-averaged ion mobility experiment was required, no modifications to the QIT were necessary. The dual gate scanning mode of operation was used to acquire mobility spectra, whereas the single mobility monitoring experiment selectively filtered ions for concentration and subsequent fragmentation within the QIT. Ion mobility separation of positively charged peptides and negatively charged carbohydrates, followed by MS fragmentation, was demonstrated. For a 1-min acquisition time, it was possible to obtain complete de novo sequence information for the examined peptides. Fragmentation of the negative carbohydrate chlorine adducts yielded ions characteristic of cross-ring and glycosidic bond cleavage. Previous unions of atmospheric pressure ion mobility and mass spectrometry have been limited in their ability to reproducibly obtain MSn data for mobility separation ions. The union of high-pressure ion mobility with quadrupole ion trap mass spectrometry presents the unique opportunity to obtain more detailed information regarding the chemistries of gas-phase ions.  相似文献   

9.
Narrow-bandwidth signals were applied to the end caps of an ion trap mass spectrometer to excite ions during collisional activation. Excitation waveforms were created from a single-frequency component and a random noise component using a multiplier circuit. Tandem and higher order mass spectrometry experiments (MS3) can be performed without optimization of the supplemental frequency applied to the end cap electrodes. The usefulness of this method of ion excitation is demonstrated using singly and multiply protonated peptide ions as well as sodium-cationized carbohydrates.  相似文献   

10.
2D FT-ICR MS allows the correlation between precursor and fragment ions by modulating ion cyclotron radii for fragmentation modes with radius-dependent efficiency in the ICR cell without the need for prior ion isolation. This technique has been successfully applied to ion-molecule reactions, Collision-induced dissociation and infrared multiphoton dissociation. In this study, we used electron capture dissociation for 2D FT-ICR MS for the first time, and we recorded two-dimensional mass spectra of peptides and a mixture of glycopeptides that showed fragments that are characteristic of ECD for each of the precursor ions in the sample. We compare the sequence coverage obtained with 2D ECD FT-ICR MS with the sequence coverage obtained with ECD MS/MS and compare the sensitivities of both techniques. We demonstrate how 2D ECD FT-ICR MS can be implemented to identify peptides and glycopeptides for proteomics analysis.  相似文献   

11.
A new technique for studying the time dependence of conformational changes of gas-phase protein ions is described. In this approach, a short pulse of electrosprayed protein ions is introduced into an ion trap and stored. After a defined time period, the distribution of ions is ejected from the trap into an ion mobility/time-of-flight mass spectrometer. Combined measurements of mobilities and flight times in the mass spectrometer provide information about the abundances of different conformer types and charge-state distributions. By varying the storage time in the trap, it is possible to monitor changes in ion conformation that occur over extended time periods (approximately 10-200 ms). The method is demonstrated by examining changes in cytochrome c ion conformations for the +7 to +10 charge states.  相似文献   

12.
A tandem quadrupole ion trap/ion mobility spectrometer (QIT/IMS) has been constructed for structural analysis based on the gas-phase mobilities of mass-selected ions. The instrument combines the ion accumulation, manipulation, and mass-selection capabilities of a modified ion trap mass spectrometer with gas-phase electrophoretic separation in a custom-built ion mobility drift cell. The quadrupole ion trap may be operated as a conventional mass spectrometer, with ion detection using an off-axis dynode/multiplier arrangement, or as an ion source for the IMS drift cell. In the latter case, pulses of ions are ejected from the trap and transferred to the drift cell where mobility in the presence of helium buffer gas is determined by the collision cross section of the ion. Ions traversing the drift cell are detected by an in-line electron multiplier and the data processed with a multichannel scaler. Preliminary data are presented on instrumental performance characteristics and the application of QIT/ IMS to structural and conformational studies of aromatic ions and protonated amine/crown ether noncovalent complexes generated via ion/molecule reactions in the ion trap.  相似文献   

13.
1,1,3,3-tetramethylguanidium (TMG) salt of alpha-cyano-4-hydroxycinnamic acid (CHCA) (G(2)CHCA) was reported by Tatiana et al. as a useful ionic liquid matrix (ILM) for sulfated oligosaccharides to suppress the loss of sulfate groups. However, the report mainly referred to positive ion spectra only and amounts of 10 pmol or more of the analyte were used. Herein, we demonstrated highly sensitive detection of sulfated/sialylated/neutral oligosaccharides and preferential ionization of glycopeptides by optimizing a newly synthesized ILM: TMG salt of p-coumaric acid (G(3)CA) and the existing G(2)CHCA in both positive and negative ion extraction modes. Sulfated oligosaccharides were detected with high sensitivity (e.g., 1 fmol) in both ion extraction modes, and the dissociation of sulfate groups was suppressed especially using G(3)CA. Sialylated and neutral oligosaccharides were also detected with high sensitivity (e.g., 1 fmol) with positive ion extraction while the dissociation of sialic acids was suppressed especially using G(3)CA. Additionally, glycopeptide ions were detected preferentially using the ILMs among the digest of a glycoprotein, ribonuclease B, in both ion extraction modes but particularly in the negative ion mode. As a result, the use of optimized ILMs provides an effective method for carbohydrate analysis due to the highly sensitive soft-ionization achieved in both ion extraction modes as well as the homogeneity of analyte-matrix mixtures.  相似文献   

14.
Lu IC  Lin JL  Lai SH  Chen CH 《Analytical chemistry》2011,83(21):8273-8277
This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.  相似文献   

15.
A combined mass spectrometry (MS) and tandem mass spectrometry (MS/MS) approach implemented with matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI FTICR MS) in the negative ion mode is described for enhanced glycopeptide detection and MS/MS analysis. Positive ion mode MS analysis is widely used for glycopeptide characterization, but the analyses are hampered by potential charge-induced fragmentation of the glycopeptides and poor detection of the glycopeptides harboring sialic acids. Furthermore, tandem MS analysis (MS/MS) via collision-induced dissociation (CID) of glycopeptides in the positive ion mode predominantly yields glycan fragmentation with minimal information to verify the connecting peptide moiety. In this study, glycoproteins such as, bovine lactoferrin (b-LF) for N-glycosylation and kappa casein (k-CN) for O-glycosylation were analyzed in both the positive- and negative ion modes after digestion with bead-immobilized Pronase. For the b-LF analysis, 44 potential N-linked glycopeptides were detected in the positive ion mode while 61 potential N-linked glycopeptides were detected in the negative ion mode. By the same token, more O-linked glycopeptides mainly harboring sialic acids from k-CN were detected in the negative ion mode. The enhanced glycopeptide detection allowed improved site-specific analysis of protein glycosylation and superior to positive ion mode detection. Overall, the negative ion mode approach is aimed toward enhanced N- and O-linked glycopeptide detection and to serve as a complementary tool to positive ion mode MS/MS analysis.  相似文献   

16.
Cai Y  Peng WP  Chang HC 《Analytical chemistry》2003,75(8):1805-1811
Mass spectra of fluorescently labeled polystyrene nanoparticles have been obtained using a combined technique of matrix-assisted laser desorption/ionization (MALDI), laser-induced fluorescence (LIF), and a dual quadrupole ion trap mass spectrometer. The spectrometer is designed in such a way that the first trap serves as a trapping and mass-analyzing device, while the second trap serves to capture and concentrate the ions ejected from the first trap for fluorescence detection. An enhancement in the LIF signal by more than 3 orders of magnitude is achieved with the help of the second trap, making mass/charge (m/z) analysis of the nanoparticles possible. Additional unique features of this mass spectrometer include that frequency scan (0.5-50 kHz) at a constant voltage (200 V), instead of voltage scan at a constant frequency, is implemented to widen the spectral analysis range of the instrument. The implementation has allowed the spectrometer to operate at relatively high buffer gas pressures (50 mTorr), crucial for effective trapping of the nanometer-sized particles generated by MALDI. We present in this report the first mass spectra of fluorescently labeled nanoparticles with a size of 27 nm using this new mass spectrometric approach. The utility of this method in the study of biological macromolecules or particles is demonstrated with dye-labeled IgG.  相似文献   

17.
Liquid chromatography (LC)-triple quadrupole mass spectrometers operating in a multiple reaction monitoring (MRM) mode are increasingly used for quantitative analysis of low-abundance analytes in highly complex biochemical matrixes. After development and selection of optimum MRM transitions, sensitivity and data quality limitations are largely related to mass spectral peak interferences from sample or matrix constituents and statistical limitations at low number of ions reaching the detector. Herein, we report on a new approach to enhancing MRM sensitivity by converting the continuous stream of ions from the ion source into a pulsed ion beam through the use of an ion funnel trap (IFT). Evaluation of the pulsed MRM approach was performed with a tryptic digest of Shewanella oneidensis strain MR-1 spiked with several model peptides. The sensitivity improvement observed with the IFT coupled in to the triple quadrupole instrument is based on several unique features. First, ion accumulation radio frequency (rf) ion trap facilitates improved droplet desolvation, which is manifested in the reduced background ion noise at the detector. Second, signal amplitude for a given transition is enhanced because of an order-of-magnitude increase in the ion charge density compared to a continuous mode of operation. Third, signal detection at the full duty cycle is obtained, as the trap use eliminates dead times between transitions, which are inevitable with continuous ion streams. In comparison with the conventional approach, the pulsed MRM signals showed 5-fold enhanced peak amplitude and 2-3-fold reduced chemical background, resulting in an improvement in the limit of detection (LOD) by a factor of ~4-8.  相似文献   

18.
The analysis of intact glycopeptides by mass spectrometry is challenging due to the numerous possibilities for isomerization, both within the attached glycan and the location of the modification on the peptide backbone. Here, we demonstrate that high field asymmetric wave ion mobility spectrometry (FAIMS), also known as differential ion mobility, is able to separate isomeric O-linked glycopeptides that have identical sequences but differing sites of glycosylation. Two glycopeptides from the glycoprotein mucin 5AC, GT(GalNAc)TPSPVPTTSTTSAP and GTTPSPVPTTST(GalNAc)TSAP (where GalNAc is O-linked N-acetylgalactosamine), were shown to coelute following reversed-phase liquid chromatography. However, FAIMS analysis of the glycopeptides revealed that the compensation voltage ranges in which the peptides were transmitted differed. Thus, it is possible at certain compensation voltages to completely separate the glycopeptides. Separation of the glycopeptides was confirmed by unique reporter ions produced by supplemental activation electron transfer dissociation mass spectrometry. These fragments also enable localization of the site of glycosylation. The results suggest that glycan position plays a key role in determining gas-phase glycopeptide structure and have implications for the application of FAIMS in glycoproteomics.  相似文献   

19.
Two related methods for effecting electron-transfer dissociation (ETD) are described that involve either the storage of analyte cations in a linear ion trap while reagent anions are transmitted through the cations or storage of the reagent anions with transmission of the analyte cations. In the former approach, the ETD products are captured and stored in the linear ion trap for subsequent mass analysis. In the latter approach, the ETD products pass through the linear ion trap and must be collected or directly mass-analyzed by an external device. In the present study, another linear ion trap is placed in series with the ion trap where the ion/ion reaction was employed. A pulsed dual ion source approach coupled with a hybrid triple quadrupole/linear ion trap instrument was used to illustrate these methods. The two approaches give similar results in terms of the identities and relative abundances of the ETD products. Under optimum conditions, the two approaches also give comparable extents of ion/ion reactions for the same reaction time. Also, conversions of precursor ions to product ions over the same reaction time are similar to those noted for experiments in which ions of both polarities are stored simultaneously. These approaches, therefore, provide expanded experimental options for the use of ETD. An advantage of transmission mode experiments that they hold over mutual storage mode experiments is that they do not require that any specialized measures be taken to enable the simultaneous storage of oppositely charged ions.  相似文献   

20.
Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly pronated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号